Using Decision Trees and Random Forest Algorithms to Predict and Determine Factors Contributing to First-Year University Students’ Learning Performance
First-year students’ learning performance has received much attention in educational practice and theory. Previous works used some variables, which should be obtained during the course or in the progress of the semester through questionnaire surveys and interviews, to build prediction models. These...
Enregistré dans:
Auteurs principaux: | Thao-Trang Huynh-Cam, Long-Sheng Chen, Huynh Le |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b2e7c55f69b846f0ad6e1ec1a64bc336 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Path Planning of a Mechanical Arm Based on an Improved Artificial Potential Field and a Rapid Expansion Random Tree Hybrid Algorithm
par: Qingni Yuan, et autres
Publié: (2021) -
Feature Selection for High-Dimensional Datasets through a Novel Artificial Bee Colony Framework
par: Yuanzi Zhang, et autres
Publié: (2021) -
A Parallel Algorithm for Dividing Octonions
par: Aleksandr Cariow, et autres
Publié: (2021) -
Algorithms
Publié: (2008) -
Decomposition of Random Sequences into Mixtures of Simpler Ones and Its Application in Network Analysis
par: András Faragó
Publié: (2021)