Musculoskeletal anatomy: evaluation and comparison of common teaching and learning modalities

Abstract Anatomy teaching has traditionally been based on dissection. However, alternative teaching modalities constantly emerge, the use of which along with a decrease in teaching hours has brought the anatomy knowledge of students and young doctors into question. In this way, the goal of the prese...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Aristeidis Zibis, Vasileios Mitrousias, Sokratis Varitimidis, Vasileios Raoulis, Apostolos Fyllos, Dimitrios Arvanitis
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b2f03b6abb564f66b680206a7a5cd5eb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Anatomy teaching has traditionally been based on dissection. However, alternative teaching modalities constantly emerge, the use of which along with a decrease in teaching hours has brought the anatomy knowledge of students and young doctors into question. In this way, the goal of the present study is to a. compare the efficacy of the most common teaching modalities and b. investigate students’ perceptions on each modality. In total, 313 medical students were taught gross anatomy of the upper limb, using four different learning modalities: dissection (n = 80), prosections (n = 77), plastic models (n = 84) and 3D anatomy software (n = 72). Students’ knowledge was examined by 100 multiple-choice and tag questions followed by an evaluation questionnaire. Regarding performance, the dissection and the 3D group outperformed the prosection and the plastic models group in total and multiple-choice questions. The performance of the 3D group in tag questions was also statistically significantly higher compared to the other three groups. In the evaluation questionnaire, dissection outperformed the rest three modalities in questions assessing students’ satisfaction, but also fear or stress before the laboratory. Moreover, dissection and 3D software were considered more useful when preparing for clinical activities. In conclusion, dissection remains first in students’ preferences and achieves higher knowledge acquisition. Contemporary, 3D anatomy software are considered equally important when preparing for clinical activities and mainly favor spatial knowledge acquisition. Prosections could be a valuable alternative when dissection is unavailable due to limited time or shortage of cadavers. Plastic models are less effective in knowledge acquisition but could be valuable when preparing for cadaveric laboratories. In conclusion, the targeted use of each learning modality is essential for a modern medical curriculum.