Causality matters in medical imaging
Scarcity of high-quality annotated data and mismatch between the development dataset and the target environment are two of the main challenges in developing predictive tools from medical imaging. In this Perspective, the authors show how causal reasoning can shed new light on these challenges.
Enregistré dans:
Auteurs principaux: | Daniel C. Castro, Ian Walker, Ben Glocker |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b2fa6e46634b4c8082ab8e17c7adf456 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Improving the accuracy of medical diagnosis with causal machine learning
par: Jonathan G. Richens, et autres
Publié: (2020) -
Publisher Correction: Improving the accuracy of medical diagnosis with causal machine learning
par: Jonathan G. Richens, et autres
Publié: (2020) -
Author Correction: Improving the accuracy of medical diagnosis with causal machine learning
par: Jonathan G. Richens, et autres
Publié: (2021) -
Causality in digital medicine
Publié: (2021) -
Analyzing causal relationships in proteomic profiles using CausalPath
par: Augustin Luna, et autres
Publié: (2021)