Reverse engineering highlights potential principles of large gene regulatory network design and learning
Gene Regulatory Networks: design and learning principles This work by Carré et al addresses central questions in biology, which are: how very large gene regulatory networks (GRNs) are organized, generate stable gene expression, and can be learnt using machine learning algorithms? In this work author...
Guardado en:
Autores principales: | Clément Carré, André Mas, Gabriel Krouk |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b2ff80f10af5488bad23cb20ccd83369 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Efficient reverse-engineering of a developmental gene regulatory network.
por: Anton Crombach, et al.
Publicado: (2012) -
Reverse engineering the neuroblastoma regulatory network uncovers MAX as one of the master regulators of tumor progression.
por: Ricardo D'Oliveira Albanus, et al.
Publicado: (2013) -
Reconciling Ecological and Engineering Design Principles for Building Microbiomes
por: Hans C. Bernstein
Publicado: (2019) -
Engineering regulatory networks for complex phenotypes in E. coli
por: Rongming Liu, et al.
Publicado: (2020) -
RegnANN: Reverse Engineering Gene Networks using Artificial Neural Networks.
por: Marco Grimaldi, et al.
Publicado: (2011)