An Anomaly-Based Intrusion Detection System for Internet of Medical Things Networks
Over the past few years, the healthcare sector is being transformed due to the rise of the Internet of Things (IoT) and the introduction of the Internet of Medical Things (IoMT) technology, whose purpose is the improvement of the patient’s quality of life. Nevertheless, the heterogenous and resource...
Enregistré dans:
Auteurs principaux: | Georgios Zachos, Ismael Essop, Georgios Mantas, Kyriakos Porfyrakis, José C. Ribeiro, Jonathan Rodriguez |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b314d87ca08940398d2f57fc413c81d8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
IoT Dataset Validation Using Machine Learning Techniques for Traffic Anomaly Detection
par: Laura Vigoya, et autres
Publié: (2021) -
Trustworthy Intrusion Detection in E-Healthcare Systems
par: Faiza Akram, et autres
Publié: (2021) -
MADS Based on DL Techniques on the Internet of Things (IoT): Survey
par: Hussah Talal, et autres
Publié: (2021) -
A Comprehensive Systematic Literature Review on Intrusion Detection Systems
par: Merve Ozkan-Okay, et autres
Publié: (2021) -
A Hybrid Deep Learning Approach for Replay and DDoS Attack Detection in a Smart City
par: Asmaa A. Elsaeidy, et autres
Publié: (2021)