A novel algorithm for independent component analysis with reference and methods for its applications.
This paper presents a stable and fast algorithm for independent component analysis with reference (ICA-R). This is a technique for incorporating available reference signals into the ICA contrast function so as to form an augmented Lagrangian function under the framework of constrained ICA (cICA). Th...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b32bdff2bd8d48179a9aefc925eeaa37 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | This paper presents a stable and fast algorithm for independent component analysis with reference (ICA-R). This is a technique for incorporating available reference signals into the ICA contrast function so as to form an augmented Lagrangian function under the framework of constrained ICA (cICA). The previous ICA-R algorithm was constructed by solving the optimization problem via a Newton-like learning style. Unfortunately, the slow convergence and potential misconvergence limit the capability of ICA-R. This paper first investigates and probes the flaws of the previous algorithm and then introduces a new stable algorithm with a faster convergence speed. There are two other highlights in this paper: first, new approaches, including the reference deflation technique and a direct way of obtaining references, are introduced to facilitate the application of ICA-R; second, a new method is proposed that the new ICA-R is used to recover the complete underlying sources with new advantages compared with other classical ICA methods. Finally, the experiments on both synthetic and real-world data verify the better performance of the new algorithm over both previous ICA-R and other well-known methods. |
---|