A machine learning approach to predict extreme inactivity in COPD patients using non-activity-related clinical data.
Facilitating the identification of extreme inactivity (EI) has the potential to improve morbidity and mortality in COPD patients. Apart from patients with obvious EI, the identification of a such behavior during a real-life consultation is unreliable. We therefore describe a machine learning algorit...
Enregistré dans:
Auteurs principaux: | Bernard Aguilaniu, David Hess, Eric Kelkel, Amandine Briault, Marie Destors, Jacques Boutros, Pei Zhi Li, Anestis Antoniadis |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b351d20fc81e4d319057331ae87b6bd7 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Population projections: recipes for action, or inaction?
par: Jane O’Sullivan
Publié: (2016) -
Population projections: recipes for action, or inaction?
par: Jane O’Sullivan
Publié: (2016) -
Retrospection of Analytical Data Collected through Smart Devices for Diseases and Disability Caused by Physical Inactivity
par: Xiaoyu Wang
Publié: (2021) -
COPD sleep phenotypes: Genesis of respiratory failure in COPD
par: Sameer Vaidya, et autres
Publié: (2021) -
Association between socioeconomic status and physical inactivity in a general Japanese population: NIPPON DATA2010.
par: Yuka Sumimoto, et autres
Publié: (2021)