A machine learning approach to predict extreme inactivity in COPD patients using non-activity-related clinical data.
Facilitating the identification of extreme inactivity (EI) has the potential to improve morbidity and mortality in COPD patients. Apart from patients with obvious EI, the identification of a such behavior during a real-life consultation is unreliable. We therefore describe a machine learning algorit...
Guardado en:
Autores principales: | Bernard Aguilaniu, David Hess, Eric Kelkel, Amandine Briault, Marie Destors, Jacques Boutros, Pei Zhi Li, Anestis Antoniadis |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b351d20fc81e4d319057331ae87b6bd7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Population projections: recipes for action, or inaction?
por: Jane O’Sullivan
Publicado: (2016) -
Population projections: recipes for action, or inaction?
por: Jane O’Sullivan
Publicado: (2016) -
Retrospection of Analytical Data Collected through Smart Devices for Diseases and Disability Caused by Physical Inactivity
por: Xiaoyu Wang
Publicado: (2021) -
COPD sleep phenotypes: Genesis of respiratory failure in COPD
por: Sameer Vaidya, et al.
Publicado: (2021) -
Association between socioeconomic status and physical inactivity in a general Japanese population: NIPPON DATA2010.
por: Yuka Sumimoto, et al.
Publicado: (2021)