A deep-learning technique for phase identification in multiphase inorganic compounds using synthetic XRD powder patterns
Identifying the composition of multiphase inorganic compounds from XRD patterns is challenging. Here the authors use a convolutional neural network to identify phases in unknown multiphase mixed inorganic powder samples with an accuracy of nearly 90%.
Guardado en:
Autores principales: | Jin-Woong Lee, Woon Bae Park, Jin Hee Lee, Satendra Pal Singh, Kee-Sun Sohn |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b35e778496fb46cb99fe1ad0f5d9d40d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Publisher Correction: A deep-learning technique for phase identification in multiphase inorganic compounds using synthetic XRD powder patterns
por: Jin-Woong Lee, et al.
Publicado: (2020) -
Identification of cinnabar existing in different objects using portable coupled XRF-XRD, laboratory-type XRD and micro-Raman spectroscopy: comparison of the techniques
por: Jingyi Shen, et al.
Publicado: (2021) -
Optimal Multiphase Computed Tomographic Angiography-based Infarct Core Estimations for Acute Ischemic Stroke
por: Seong-Joon Lee, et al.
Publicado: (2019) -
A comparative study of the crystallinity of polyetheretherketone by using density, DSC, XRD, and Raman spectroscopy techniques
por: M. Doumeng, et al.
Publicado: (2021) -
Dirty engineering data-driven inverse prediction machine learning model
por: Jin-Woong Lee, et al.
Publicado: (2020)