Nano-imaging of strain-tuned stripe textures in a Mott crystal
Abstract The 4d transition metal perovskites Can+1RunO3n+1 have attracted interest for their strongly interacting electronic phases showing pronounced sensitivity to controllable stimuli like strain, temperature, and even electrical current. Through multi-messenger low-temperature nano-imaging, we r...
Saved in:
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/b360aee590d34adc9025d3a9fc89c285 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract The 4d transition metal perovskites Can+1RunO3n+1 have attracted interest for their strongly interacting electronic phases showing pronounced sensitivity to controllable stimuli like strain, temperature, and even electrical current. Through multi-messenger low-temperature nano-imaging, we reveal a spontaneous striped texture of coexisting insulating and metallic domains in single crystals of the bilayer ruthenate Ca3(TixRu1-x)2O7 across its first-order Mott transition at $$T \approx 95$$ T ≈ 95 K. We image on-demand anisotropic nucleation and growth of these domains under in situ applied uniaxial strain rationalized through control of a spontaneous Jahn-Teller distortion. Our scanning nano-susceptibility imaging resolves the detailed susceptibility of coexisting phases to strain and temperature at the transition threshold. Comparing these nano-imaging results to bulk-sensitive elastoresistance measurements, we uncover an emergent “domain susceptibility” sensitive to both the volumetric phase fractions and elasticity of the self-organized domain lattice. Our combined susceptibility probes afford nano-scale insights into strain-mediated control over the insulator-metal transition in 4d transition metal oxides. |
---|