Positive solutions for (p, q)-equations with convection and a sign-changing reaction
We consider a nonlinear Dirichlet problem driven by the (p, q)-Laplacian and with a reaction which is dependent on the gradient. We look for positive solutions and we do not assume that the reaction is nonnegative. Using a mixture of variational and topological methods (the "frozen variable&quo...
Guardado en:
Autores principales: | Zeng Shengda, Papageorgiou Nikolaos S. |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b360c477e95e45f8ab53ce8d3c7bbbf8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Existence and concentration of positive solutions for a critical p&q equation
por: Costa Gustavo S., et al.
Publicado: (2021) -
Ground state solutions to a class of critical Schrödinger problem
por: Mao Anmin, et al.
Publicado: (2021) -
Approximate nonradial solutions for the Lane-Emden problem in the ball
por: Fazekas Borbála, et al.
Publicado: (2021) -
On the uniqueness for weak solutions of steady double-phase fluids
por: Abdelwahed Mohamed, et al.
Publicado: (2021) -
Refined second boundary behavior of the unique strictly convex solution to a singular Monge-Ampère equation
por: Wan Haitao, et al.
Publicado: (2021)