Positive solutions for (p, q)-equations with convection and a sign-changing reaction
We consider a nonlinear Dirichlet problem driven by the (p, q)-Laplacian and with a reaction which is dependent on the gradient. We look for positive solutions and we do not assume that the reaction is nonnegative. Using a mixture of variational and topological methods (the "frozen variable&quo...
Enregistré dans:
Auteurs principaux: | Zeng Shengda, Papageorgiou Nikolaos S. |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b360c477e95e45f8ab53ce8d3c7bbbf8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Existence and concentration of positive solutions for a critical p&q equation
par: Costa Gustavo S., et autres
Publié: (2021) -
Ground state solutions to a class of critical Schrödinger problem
par: Mao Anmin, et autres
Publié: (2021) -
Approximate nonradial solutions for the Lane-Emden problem in the ball
par: Fazekas Borbála, et autres
Publié: (2021) -
On the uniqueness for weak solutions of steady double-phase fluids
par: Abdelwahed Mohamed, et autres
Publié: (2021) -
Refined second boundary behavior of the unique strictly convex solution to a singular Monge-Ampère equation
par: Wan Haitao, et autres
Publié: (2021)