Identifying unique neighborhood characteristics to guide health planning for stroke and heart attack: fuzzy cluster and discriminant analyses approaches.
<h4>Background</h4>Socioeconomic, demographic, and geographic factors are known determinants of stroke and myocardial infarction (MI) risk. Clustering of these factors in neighborhoods needs to be taken into consideration during planning, prioritization and implementation of health progr...
Guardado en:
Autores principales: | Ashley Pedigo, William Seaver, Agricola Odoi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2011
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b363216ffa094f23b2e0d7a823634b0d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
- Avoiding Heart Attacks & Strokes
-
Klasifikasi Sinyal EEG Menggunakan Metode Fuzzy C-Means Clustering (FCM) Dan Adaptive Neighborhood Modified Backpropagation (ANMBP)
por: Dian Candra Rini
Publicado: (2015) -
Neighborhood disadvantage, neighborhood safety and cardiometabolic risk factors in African Americans: biosocial associations in the Jackson Heart study.
por: Cheryl R Clark, et al.
Publicado: (2013) -
An Effective Clustering Algorithm Using Adaptive Neighborhood and Border Peeling Method
por: Ji Feng, et al.
Publicado: (2021) -
Potential effects on cardiometabolic risk factors and body composition by short message service (SMS)-guided training after recent minor stroke or transient ischaemic attack: post hoc analyses of the STROKEWALK randomised controlled trial
por: Staffan Eriksson, et al.
Publicado: (2021)