Construction of abundant novel analytical solutions of the space–time fractional nonlinear generalized equal width model via Riemann–Liouville derivative with application of mathematical methods
The space–time fractional generalized equal width (GEW) equation is an imperative model which is utilized to represent the nonlinear dispersive waves, namely, waves flowing in the shallow water strait, one-dimensional wave origination escalating in the nonlinear dispersive medium approximation, geli...
Guardado en:
Autores principales: | Seadawy Aly R., Ali Asghar, Althobaiti Saad, El-Rashidy Khaled |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b381f86cf8294af5b689872e9ff1e192 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Lyapunov-type inequality for a Riemann-Liouville type fractional boundary value problem with anti-periodic boundary conditions
por: Jonnalagadda,Jagan Mohan, et al.
Publicado: (2021) -
Uncertainty principle for the Riemann-Liouville operator
por: Hleili,Khaled, et al.
Publicado: (2011) -
Ostrowski type fractional integral inequalities for s -Godunova-Levin functions via k -fractional integrals
por: Farid,Ghulam, et al.
Publicado: (2017) -
Differential equations with tempered Ψ-Caputo fractional derivative
por: Milan Medveď, et al.
Publicado: (2021) -
On a nonlinear system of Riemann-Liouville fractional differential equations with semi-coupled integro-multipoint boundary conditions
por: Alsaedi Ahmed, et al.
Publicado: (2021)