A binary encoding of spinors and applications
We present a binary code for spinors and Clifford multiplication using non-negative integers and their binary expressions, which can be easily implemented in computer programs for explicit calculations. As applications, we present explicit descriptions of the triality automorphism of Spin(8), explic...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b383e5f12be849d6be3bd113c1a84024 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b383e5f12be849d6be3bd113c1a84024 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b383e5f12be849d6be3bd113c1a840242021-12-02T16:36:59ZA binary encoding of spinors and applications2300-744310.1515/coma-2020-0100https://doaj.org/article/b383e5f12be849d6be3bd113c1a840242020-08-01T00:00:00Zhttps://doi.org/10.1515/coma-2020-0100https://doaj.org/toc/2300-7443We present a binary code for spinors and Clifford multiplication using non-negative integers and their binary expressions, which can be easily implemented in computer programs for explicit calculations. As applications, we present explicit descriptions of the triality automorphism of Spin(8), explicit representations of the Lie algebras 𝔰𝔭𝔦𝔶 (8), 𝔰𝔭𝔦𝔶 (7) and 𝔤2, etc.Arizmendi GerardoHerrera RafaelDe Gruyterarticlespin representationclifford algebrasspinor representationoctonionstriality15a6615a6953c2717b1017b2520g41MathematicsQA1-939ENComplex Manifolds, Vol 7, Iss 1, Pp 162-193 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
spin representation clifford algebras spinor representation octonions triality 15a66 15a69 53c27 17b10 17b25 20g41 Mathematics QA1-939 |
spellingShingle |
spin representation clifford algebras spinor representation octonions triality 15a66 15a69 53c27 17b10 17b25 20g41 Mathematics QA1-939 Arizmendi Gerardo Herrera Rafael A binary encoding of spinors and applications |
description |
We present a binary code for spinors and Clifford multiplication using non-negative integers and their binary expressions, which can be easily implemented in computer programs for explicit calculations. As applications, we present explicit descriptions of the triality automorphism of Spin(8), explicit representations of the Lie algebras 𝔰𝔭𝔦𝔶 (8), 𝔰𝔭𝔦𝔶 (7) and 𝔤2, etc. |
format |
article |
author |
Arizmendi Gerardo Herrera Rafael |
author_facet |
Arizmendi Gerardo Herrera Rafael |
author_sort |
Arizmendi Gerardo |
title |
A binary encoding of spinors and applications |
title_short |
A binary encoding of spinors and applications |
title_full |
A binary encoding of spinors and applications |
title_fullStr |
A binary encoding of spinors and applications |
title_full_unstemmed |
A binary encoding of spinors and applications |
title_sort |
binary encoding of spinors and applications |
publisher |
De Gruyter |
publishDate |
2020 |
url |
https://doaj.org/article/b383e5f12be849d6be3bd113c1a84024 |
work_keys_str_mv |
AT arizmendigerardo abinaryencodingofspinorsandapplications AT herrerarafael abinaryencodingofspinorsandapplications AT arizmendigerardo binaryencodingofspinorsandapplications AT herrerarafael binaryencodingofspinorsandapplications |
_version_ |
1718383653219729408 |