A binary encoding of spinors and applications

We present a binary code for spinors and Clifford multiplication using non-negative integers and their binary expressions, which can be easily implemented in computer programs for explicit calculations. As applications, we present explicit descriptions of the triality automorphism of Spin(8), explic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Arizmendi Gerardo, Herrera Rafael
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2020
Materias:
Acceso en línea:https://doaj.org/article/b383e5f12be849d6be3bd113c1a84024
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b383e5f12be849d6be3bd113c1a84024
record_format dspace
spelling oai:doaj.org-article:b383e5f12be849d6be3bd113c1a840242021-12-02T16:36:59ZA binary encoding of spinors and applications2300-744310.1515/coma-2020-0100https://doaj.org/article/b383e5f12be849d6be3bd113c1a840242020-08-01T00:00:00Zhttps://doi.org/10.1515/coma-2020-0100https://doaj.org/toc/2300-7443We present a binary code for spinors and Clifford multiplication using non-negative integers and their binary expressions, which can be easily implemented in computer programs for explicit calculations. As applications, we present explicit descriptions of the triality automorphism of Spin(8), explicit representations of the Lie algebras 𝔰𝔭𝔦𝔶 (8), 𝔰𝔭𝔦𝔶 (7) and 𝔤2, etc.Arizmendi GerardoHerrera RafaelDe Gruyterarticlespin representationclifford algebrasspinor representationoctonionstriality15a6615a6953c2717b1017b2520g41MathematicsQA1-939ENComplex Manifolds, Vol 7, Iss 1, Pp 162-193 (2020)
institution DOAJ
collection DOAJ
language EN
topic spin representation
clifford algebras
spinor representation
octonions
triality
15a66
15a69
53c27
17b10
17b25
20g41
Mathematics
QA1-939
spellingShingle spin representation
clifford algebras
spinor representation
octonions
triality
15a66
15a69
53c27
17b10
17b25
20g41
Mathematics
QA1-939
Arizmendi Gerardo
Herrera Rafael
A binary encoding of spinors and applications
description We present a binary code for spinors and Clifford multiplication using non-negative integers and their binary expressions, which can be easily implemented in computer programs for explicit calculations. As applications, we present explicit descriptions of the triality automorphism of Spin(8), explicit representations of the Lie algebras 𝔰𝔭𝔦𝔶 (8), 𝔰𝔭𝔦𝔶 (7) and 𝔤2, etc.
format article
author Arizmendi Gerardo
Herrera Rafael
author_facet Arizmendi Gerardo
Herrera Rafael
author_sort Arizmendi Gerardo
title A binary encoding of spinors and applications
title_short A binary encoding of spinors and applications
title_full A binary encoding of spinors and applications
title_fullStr A binary encoding of spinors and applications
title_full_unstemmed A binary encoding of spinors and applications
title_sort binary encoding of spinors and applications
publisher De Gruyter
publishDate 2020
url https://doaj.org/article/b383e5f12be849d6be3bd113c1a84024
work_keys_str_mv AT arizmendigerardo abinaryencodingofspinorsandapplications
AT herrerarafael abinaryencodingofspinorsandapplications
AT arizmendigerardo binaryencodingofspinorsandapplications
AT herrerarafael binaryencodingofspinorsandapplications
_version_ 1718383653219729408