A Dual Network for Super-Resolution and Semantic Segmentation of Sentinel-2 Imagery
There is a growing interest in the development of automated data processing workflows that provide reliable, high spatial resolution land cover maps. However, high-resolution remote sensing images are not always affordable. Taking into account the free availability of Sentinel-2 satellite data, in t...
Guardado en:
Autores principales: | Saüc Abadal, Luis Salgueiro, Javier Marcello, Verónica Vilaplana |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b38e9069a39e4b2b9a813c90ee6d5ccc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Region-Enhancing Network for Semantic Segmentation of Remote-Sensing Imagery
por: Bo Zhong, et al.
Publicado: (2021) -
A Multi-Stage GAN for Multi-Organ Chest X-ray Image Generation and Segmentation
por: Giorgio Ciano, et al.
Publicado: (2021) -
DSTnet: Deformable Spatio-Temporal Convolutional Residual Network for Video Super-Resolution
por: Anusha Khan, et al.
Publicado: (2021) -
Mapping Relict Charcoal Hearths in New England Using Deep Convolutional Neural Networks and LiDAR Data
por: Ji Won Suh, et al.
Publicado: (2021) -
An Approach to Semantically Segmenting Building Components and Outdoor Scenes Based on Multichannel Aerial Imagery Datasets
por: Yu Hou, et al.
Publicado: (2021)