The Killing Mechanism of Teixobactin against Methicillin-Resistant <named-content content-type="genus-species">Staphylococcus aureus</named-content>: an Untargeted Metabolomics Study

ABSTRACT Antibiotics have served humankind through their use in modern medicine as effective treatments for otherwise fatal bacterial infections. Teixobactin is a first member of newly discovered natural antibiotics that was recently identified from a hitherto-unculturable soil bacterium, Eleftheria...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Maytham Hussein, John A. Karas, Elena K. Schneider-Futschik, Fan Chen, James Swarbrick, Olivia K. A. Paulin, Daniel Hoyer, Mark Baker, Yan Zhu, Jian Li, Tony Velkov
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://doaj.org/article/b3aaf44ee5b040ccb90ed2112081cef2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b3aaf44ee5b040ccb90ed2112081cef2
record_format dspace
institution DOAJ
collection DOAJ
language EN
topic antimicrobial resistance
antimicrobial peptides
solid-phase peptide synthesis
teixobactin
metabolomics
methicillin-resistant Staphylococcus aureus
Microbiology
QR1-502
spellingShingle antimicrobial resistance
antimicrobial peptides
solid-phase peptide synthesis
teixobactin
metabolomics
methicillin-resistant Staphylococcus aureus
Microbiology
QR1-502
Maytham Hussein
John A. Karas
Elena K. Schneider-Futschik
Fan Chen
James Swarbrick
Olivia K. A. Paulin
Daniel Hoyer
Mark Baker
Yan Zhu
Jian Li
Tony Velkov
The Killing Mechanism of Teixobactin against Methicillin-Resistant <named-content content-type="genus-species">Staphylococcus aureus</named-content>: an Untargeted Metabolomics Study
description ABSTRACT Antibiotics have served humankind through their use in modern medicine as effective treatments for otherwise fatal bacterial infections. Teixobactin is a first member of newly discovered natural antibiotics that was recently identified from a hitherto-unculturable soil bacterium, Eleftheria terrae, and recognized as a potent antibacterial agent against various Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci. The most distinctive characteristic of teixobactin as an effective antibiotic is that teixobactin resistance could not be evolved in a laboratory setting. It is purported that teixobactin’s “resistance-resistant” mechanism of action includes binding to the essential bacterial cell wall synthesis building blocks lipid II and lipid III. In the present study, metabolomics was used to investigate the potential metabolic pathways involved in the mechanisms of antibacterial activity of the synthetic teixobactin analogue Leu10-teixobactin against a MRSA strain, S. aureus ATCC 700699. The metabolomes of S. aureus ATCC 700699 cells 1, 3, and 6 h following treatment with Leu10-teixobactin (0.5 μg/ml, i.e., 0.5× MIC) were compared to those of the untreated controls. Leu10-teixobactin significantly perturbed bacterial membrane lipids (glycerophospholipids and fatty acids), peptidoglycan (lipid I and II) metabolism, and cell wall teichoic acid (lipid III) biosynthesis as early as after 1 h of treatment, reflecting an initial activity on the cell envelope. Concordant with its time-dependent antibacterial killing action, Leu10-teixobactin caused more perturbations in the levels of key intermediates in pathways of amino-sugar and nucleotide-sugar metabolism and their downstream peptidoglycan and teichoic acid biosynthesis at 3 and 6 h. Significant perturbations in arginine metabolism and the interrelated tricarboxylic acid cycle, histidine metabolism, pantothenate, and coenzyme A biosynthesis were also observed at 3 and 6 h. To conclude, this is the first study to provide novel metabolomics mechanistic information, which lends support to the development of teixobactin as an antibacterial drug for the treatment of multidrug-resistant Gram-positive infections. IMPORTANCE Antimicrobial resistance is one of the greatest threats to the global health system. It is imperative that new anti-infective therapeutics be developed against problematic “superbugs.” The cyclic depsipeptide teixobactin holds much promise as a new class of antibiotics for highly resistant Gram-positive pathogens (e.g., methicillin-resistant Staphylococcus aureus [MRSA]). Understanding its molecular mechanism(s) of action could lead to the design of new compounds with a broader activity spectrum. Here, we describe the first metabolomics study to investigate the killing mechanism(s) of teixobactin against MRSA. Our findings revealed that teixobactin significantly disorganized the bacterial cell envelope, as reflected by a profound perturbation in the bacterial membrane lipids and cell wall biosynthesis (peptidoglycan and teichoic acid). Importantly, teixobactin significantly suppressed the main intermediate d-alanyl-d-lactate involved in the mechanism of vancomycin resistance in S. aureus. These novel results help explain the unique mechanism of action of teixobactin and its lack of cross-resistance with vancomycin.
format article
author Maytham Hussein
John A. Karas
Elena K. Schneider-Futschik
Fan Chen
James Swarbrick
Olivia K. A. Paulin
Daniel Hoyer
Mark Baker
Yan Zhu
Jian Li
Tony Velkov
author_facet Maytham Hussein
John A. Karas
Elena K. Schneider-Futschik
Fan Chen
James Swarbrick
Olivia K. A. Paulin
Daniel Hoyer
Mark Baker
Yan Zhu
Jian Li
Tony Velkov
author_sort Maytham Hussein
title The Killing Mechanism of Teixobactin against Methicillin-Resistant <named-content content-type="genus-species">Staphylococcus aureus</named-content>: an Untargeted Metabolomics Study
title_short The Killing Mechanism of Teixobactin against Methicillin-Resistant <named-content content-type="genus-species">Staphylococcus aureus</named-content>: an Untargeted Metabolomics Study
title_full The Killing Mechanism of Teixobactin against Methicillin-Resistant <named-content content-type="genus-species">Staphylococcus aureus</named-content>: an Untargeted Metabolomics Study
title_fullStr The Killing Mechanism of Teixobactin against Methicillin-Resistant <named-content content-type="genus-species">Staphylococcus aureus</named-content>: an Untargeted Metabolomics Study
title_full_unstemmed The Killing Mechanism of Teixobactin against Methicillin-Resistant <named-content content-type="genus-species">Staphylococcus aureus</named-content>: an Untargeted Metabolomics Study
title_sort killing mechanism of teixobactin against methicillin-resistant <named-content content-type="genus-species">staphylococcus aureus</named-content>: an untargeted metabolomics study
publisher American Society for Microbiology
publishDate 2020
url https://doaj.org/article/b3aaf44ee5b040ccb90ed2112081cef2
work_keys_str_mv AT maythamhussein thekillingmechanismofteixobactinagainstmethicillinresistantnamedcontentcontenttypegenusspeciesstaphylococcusaureusnamedcontentanuntargetedmetabolomicsstudy
AT johnakaras thekillingmechanismofteixobactinagainstmethicillinresistantnamedcontentcontenttypegenusspeciesstaphylococcusaureusnamedcontentanuntargetedmetabolomicsstudy
AT elenakschneiderfutschik thekillingmechanismofteixobactinagainstmethicillinresistantnamedcontentcontenttypegenusspeciesstaphylococcusaureusnamedcontentanuntargetedmetabolomicsstudy
AT fanchen thekillingmechanismofteixobactinagainstmethicillinresistantnamedcontentcontenttypegenusspeciesstaphylococcusaureusnamedcontentanuntargetedmetabolomicsstudy
AT jamesswarbrick thekillingmechanismofteixobactinagainstmethicillinresistantnamedcontentcontenttypegenusspeciesstaphylococcusaureusnamedcontentanuntargetedmetabolomicsstudy
AT oliviakapaulin thekillingmechanismofteixobactinagainstmethicillinresistantnamedcontentcontenttypegenusspeciesstaphylococcusaureusnamedcontentanuntargetedmetabolomicsstudy
AT danielhoyer thekillingmechanismofteixobactinagainstmethicillinresistantnamedcontentcontenttypegenusspeciesstaphylococcusaureusnamedcontentanuntargetedmetabolomicsstudy
AT markbaker thekillingmechanismofteixobactinagainstmethicillinresistantnamedcontentcontenttypegenusspeciesstaphylococcusaureusnamedcontentanuntargetedmetabolomicsstudy
AT yanzhu thekillingmechanismofteixobactinagainstmethicillinresistantnamedcontentcontenttypegenusspeciesstaphylococcusaureusnamedcontentanuntargetedmetabolomicsstudy
AT jianli thekillingmechanismofteixobactinagainstmethicillinresistantnamedcontentcontenttypegenusspeciesstaphylococcusaureusnamedcontentanuntargetedmetabolomicsstudy
AT tonyvelkov thekillingmechanismofteixobactinagainstmethicillinresistantnamedcontentcontenttypegenusspeciesstaphylococcusaureusnamedcontentanuntargetedmetabolomicsstudy
AT maythamhussein killingmechanismofteixobactinagainstmethicillinresistantnamedcontentcontenttypegenusspeciesstaphylococcusaureusnamedcontentanuntargetedmetabolomicsstudy
AT johnakaras killingmechanismofteixobactinagainstmethicillinresistantnamedcontentcontenttypegenusspeciesstaphylococcusaureusnamedcontentanuntargetedmetabolomicsstudy
AT elenakschneiderfutschik killingmechanismofteixobactinagainstmethicillinresistantnamedcontentcontenttypegenusspeciesstaphylococcusaureusnamedcontentanuntargetedmetabolomicsstudy
AT fanchen killingmechanismofteixobactinagainstmethicillinresistantnamedcontentcontenttypegenusspeciesstaphylococcusaureusnamedcontentanuntargetedmetabolomicsstudy
AT jamesswarbrick killingmechanismofteixobactinagainstmethicillinresistantnamedcontentcontenttypegenusspeciesstaphylococcusaureusnamedcontentanuntargetedmetabolomicsstudy
AT oliviakapaulin killingmechanismofteixobactinagainstmethicillinresistantnamedcontentcontenttypegenusspeciesstaphylococcusaureusnamedcontentanuntargetedmetabolomicsstudy
AT danielhoyer killingmechanismofteixobactinagainstmethicillinresistantnamedcontentcontenttypegenusspeciesstaphylococcusaureusnamedcontentanuntargetedmetabolomicsstudy
AT markbaker killingmechanismofteixobactinagainstmethicillinresistantnamedcontentcontenttypegenusspeciesstaphylococcusaureusnamedcontentanuntargetedmetabolomicsstudy
AT yanzhu killingmechanismofteixobactinagainstmethicillinresistantnamedcontentcontenttypegenusspeciesstaphylococcusaureusnamedcontentanuntargetedmetabolomicsstudy
AT jianli killingmechanismofteixobactinagainstmethicillinresistantnamedcontentcontenttypegenusspeciesstaphylococcusaureusnamedcontentanuntargetedmetabolomicsstudy
AT tonyvelkov killingmechanismofteixobactinagainstmethicillinresistantnamedcontentcontenttypegenusspeciesstaphylococcusaureusnamedcontentanuntargetedmetabolomicsstudy
_version_ 1718375985210982400
spelling oai:doaj.org-article:b3aaf44ee5b040ccb90ed2112081cef22021-12-02T19:46:20ZThe Killing Mechanism of Teixobactin against Methicillin-Resistant <named-content content-type="genus-species">Staphylococcus aureus</named-content>: an Untargeted Metabolomics Study10.1128/mSystems.00077-202379-5077https://doaj.org/article/b3aaf44ee5b040ccb90ed2112081cef22020-06-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSystems.00077-20https://doaj.org/toc/2379-5077ABSTRACT Antibiotics have served humankind through their use in modern medicine as effective treatments for otherwise fatal bacterial infections. Teixobactin is a first member of newly discovered natural antibiotics that was recently identified from a hitherto-unculturable soil bacterium, Eleftheria terrae, and recognized as a potent antibacterial agent against various Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci. The most distinctive characteristic of teixobactin as an effective antibiotic is that teixobactin resistance could not be evolved in a laboratory setting. It is purported that teixobactin’s “resistance-resistant” mechanism of action includes binding to the essential bacterial cell wall synthesis building blocks lipid II and lipid III. In the present study, metabolomics was used to investigate the potential metabolic pathways involved in the mechanisms of antibacterial activity of the synthetic teixobactin analogue Leu10-teixobactin against a MRSA strain, S. aureus ATCC 700699. The metabolomes of S. aureus ATCC 700699 cells 1, 3, and 6 h following treatment with Leu10-teixobactin (0.5 μg/ml, i.e., 0.5× MIC) were compared to those of the untreated controls. Leu10-teixobactin significantly perturbed bacterial membrane lipids (glycerophospholipids and fatty acids), peptidoglycan (lipid I and II) metabolism, and cell wall teichoic acid (lipid III) biosynthesis as early as after 1 h of treatment, reflecting an initial activity on the cell envelope. Concordant with its time-dependent antibacterial killing action, Leu10-teixobactin caused more perturbations in the levels of key intermediates in pathways of amino-sugar and nucleotide-sugar metabolism and their downstream peptidoglycan and teichoic acid biosynthesis at 3 and 6 h. Significant perturbations in arginine metabolism and the interrelated tricarboxylic acid cycle, histidine metabolism, pantothenate, and coenzyme A biosynthesis were also observed at 3 and 6 h. To conclude, this is the first study to provide novel metabolomics mechanistic information, which lends support to the development of teixobactin as an antibacterial drug for the treatment of multidrug-resistant Gram-positive infections. IMPORTANCE Antimicrobial resistance is one of the greatest threats to the global health system. It is imperative that new anti-infective therapeutics be developed against problematic “superbugs.” The cyclic depsipeptide teixobactin holds much promise as a new class of antibiotics for highly resistant Gram-positive pathogens (e.g., methicillin-resistant Staphylococcus aureus [MRSA]). Understanding its molecular mechanism(s) of action could lead to the design of new compounds with a broader activity spectrum. Here, we describe the first metabolomics study to investigate the killing mechanism(s) of teixobactin against MRSA. Our findings revealed that teixobactin significantly disorganized the bacterial cell envelope, as reflected by a profound perturbation in the bacterial membrane lipids and cell wall biosynthesis (peptidoglycan and teichoic acid). Importantly, teixobactin significantly suppressed the main intermediate d-alanyl-d-lactate involved in the mechanism of vancomycin resistance in S. aureus. These novel results help explain the unique mechanism of action of teixobactin and its lack of cross-resistance with vancomycin.Maytham HusseinJohn A. KarasElena K. Schneider-FutschikFan ChenJames SwarbrickOlivia K. A. PaulinDaniel HoyerMark BakerYan ZhuJian LiTony VelkovAmerican Society for Microbiologyarticleantimicrobial resistanceantimicrobial peptidessolid-phase peptide synthesisteixobactinmetabolomicsmethicillin-resistant Staphylococcus aureusMicrobiologyQR1-502ENmSystems, Vol 5, Iss 3 (2020)