A gene module identification algorithm and its applications to identify gene modules and key genes of hepatocellular carcinoma
Abstract To further improve the effect of gene modules identification, combining the Newman algorithm in community detection and K-means algorithm framework, a new method of gene module identification, GCNA-Kpca algorithm, was proposed. The core idea of the algorithm was to build a gene co-expressio...
Guardado en:
Autores principales: | Yan Zhang, Zhengkui Lin, Xiaofeng Lin, Xue Zhang, Qian Zhao, Yeqing Sun |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b3c3482223984a35ac45df06d4aacdb0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Gene Network Analysis of Hepatocellular Carcinoma Identifies Modules Associated with Disease Progression, Survival, and Chemo Drug Resistance
por: Ye H, et al.
Publicado: (2021) -
Identification and Validation of a Tumor Microenvironment-Related Gene Signature in Hepatocellular Carcinoma Prognosis
por: Changjing Huang, et al.
Publicado: (2021) -
Weighted gene co-expression network analysis to identify key modules and hub genes associated with paucigranulocytic asthma
por: Min Li, et al.
Publicado: (2021) -
Identification of Gene Co-Expression Modules and Core Genes Related to Immune Disorders in Major Depression Disorder
por: Zhang L, et al.
Publicado: (2021) -
Weighted Gene Coexpression Network Analysis Identifies Specific Modules and Hub Genes Related to Major Depression
por: Zhang G, et al.
Publicado: (2020)