Breast cancer recurrence prediction with ensemble methods and cost-sensitive learning
Breast cancer is one of the most common cancers in women all over the world. Due to the improvement of medical treatments, most of the breast cancer patients would be in remission. However, the patients have to face the next challenge, the recurrence of breast cancer which may cause more severe effe...
Guardado en:
Autores principales: | Yang Pei-Tse, Wu Wen-Shuo, Wu Chia-Chun, Shih Yi-Nuo, Hsieh Chung-Ho, Hsu Jia-Lien |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b3caf70b408442378144d6d813871a4e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Comparison of Machine Learning Classifiers for Reducing Fitness Evaluations of Structural Optimization
por: Tran-Hieu Nguyen, et al.
Publicado: (2021) -
Cost-Sensitive Self-Paced Learning With Adaptive Regularization for Classification of Image Time Series
por: Hao Li, et al.
Publicado: (2021) -
Boosting-GNN: Boosting Algorithm for Graph Networks on Imbalanced Node Classification
por: Shuhao Shi, et al.
Publicado: (2021) -
Opioids and Breast Cancer Recurrence: A Systematic Review
por: Merlino Lucia, et al.
Publicado: (2021) -
Impact of Agency Costs on Investment-cash Flow Sensitivity
por: Mehdi Arabsalehi, et al.
Publicado: (2014)