Quasiconformal Jordan Domains
We extend the classical Carathéodory extension theorem to quasiconformal Jordan domains (Y, dY). We say that a metric space (Y, dY) is a quasiconformal Jordan domain if the completion ̄Y of (Y, dY) has finite Hausdorff 2-measure, the boundary ∂Y = ̄Y \ Y is homeomorphic to 𝕊1, and there exists a hom...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b3cdbb65a0f94081bf8daedd49e15a4c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b3cdbb65a0f94081bf8daedd49e15a4c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b3cdbb65a0f94081bf8daedd49e15a4c2021-12-05T14:10:38ZQuasiconformal Jordan Domains2299-327410.1515/agms-2020-0127https://doaj.org/article/b3cdbb65a0f94081bf8daedd49e15a4c2021-11-01T00:00:00Zhttps://doi.org/10.1515/agms-2020-0127https://doaj.org/toc/2299-3274We extend the classical Carathéodory extension theorem to quasiconformal Jordan domains (Y, dY). We say that a metric space (Y, dY) is a quasiconformal Jordan domain if the completion ̄Y of (Y, dY) has finite Hausdorff 2-measure, the boundary ∂Y = ̄Y \ Y is homeomorphic to 𝕊1, and there exists a homeomorphism ϕ: 𝔻 →(Y, dY) that is quasiconformal in the geometric sense.Ikonen ToniDe Gruyterarticlequasiconformalmetric surfacecarathéodorybeurling–ahlforsprimary 30l10secondary 30c65, 28a75, 51f99AnalysisQA299.6-433ENAnalysis and Geometry in Metric Spaces, Vol 9, Iss 1, Pp 167-185 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
quasiconformal metric surface carathéodory beurling–ahlfors primary 30l10 secondary 30c65, 28a75, 51f99 Analysis QA299.6-433 |
spellingShingle |
quasiconformal metric surface carathéodory beurling–ahlfors primary 30l10 secondary 30c65, 28a75, 51f99 Analysis QA299.6-433 Ikonen Toni Quasiconformal Jordan Domains |
description |
We extend the classical Carathéodory extension theorem to quasiconformal Jordan domains (Y, dY). We say that a metric space (Y, dY) is a quasiconformal Jordan domain if the completion ̄Y of (Y, dY) has finite Hausdorff 2-measure, the boundary ∂Y = ̄Y \ Y is homeomorphic to 𝕊1, and there exists a homeomorphism ϕ: 𝔻 →(Y, dY) that is quasiconformal in the geometric sense. |
format |
article |
author |
Ikonen Toni |
author_facet |
Ikonen Toni |
author_sort |
Ikonen Toni |
title |
Quasiconformal Jordan Domains |
title_short |
Quasiconformal Jordan Domains |
title_full |
Quasiconformal Jordan Domains |
title_fullStr |
Quasiconformal Jordan Domains |
title_full_unstemmed |
Quasiconformal Jordan Domains |
title_sort |
quasiconformal jordan domains |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/b3cdbb65a0f94081bf8daedd49e15a4c |
work_keys_str_mv |
AT ikonentoni quasiconformaljordandomains |
_version_ |
1718371860747386880 |