Crack recognition automation in concrete bridges using Deep Convolutional Neural Networks
Using Unmanned Aerial Systems (UASs) for bridge visual inspection automation necessitates the implementation of Deep Convolutional Neural Networks (DCNNs) to process efficiently the large amount of data collected by the UASs sensors. However, these networks require massive training datasets for the...
Enregistré dans:
Auteurs principaux: | Zoubir Hajar, Rguig Mustapha, Elaroussi Mohammed |
---|---|
Format: | article |
Langue: | EN FR |
Publié: |
EDP Sciences
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b3f39a0efa384d68b2a628e82011f632 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Investigating the effect of crack length and angle on the behavior of concrete weights: a case study of Gotvand deviation regulation dam
par: zeynab derikvand, et autres
Publié: (2020) -
Peculiar aspects of cracking in prestressed reinforced concrete T-beams
par: Vasyl Karpiuk, et autres
Publié: (2021) -
Effect of various fiber on early- age shrinkage cracks and mechanical strength of high strength concrete
par: Ali Sademomtazi, et autres
Publié: (2018) -
Effect of Concrete Strength, Arrangement/Ratio of Reinforcement on Flexural Behavior and Cracking of Concrete Beams Reinforced with GFRP Bars
par: Amir Mohammad Mohtaj Khorasani, et autres
Publié: (2020) -
A new technique in the modal analysis of cracked reinforced concrete (RC) beams through the finite element method
par: Ali Alijani, et autres
Publié: (2020)