COVID-19: a simple statistical model for predicting intensive care unit load in exponential phases of the disease
Abstract One major bottleneck in the ongoing COVID-19 pandemic is the limited number of critical care beds. Due to the dynamic development of infections and the time lag between when patients are infected and when a proportion of them enters an intensive care unit (ICU), the need for future intensiv...
Enregistré dans:
Auteurs principaux: | Matthias Ritter, Derek V. M. Ott, Friedemann Paul, John-Dylan Haynes, Kerstin Ritter |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b4045b3cd80948ccb49ee74e3696e398 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Risk prediction models for intensive care unit-acquired weakness in intensive care unit patients: A systematic review.
par: Wei Zhang, et autres
Publié: (2021) -
Some New Simple Inequalities Involving Exponential, Trigonometric and Hyperbolic Functions
par: Bagul,Yogesh J., et autres
Publié: (2019) -
Intensive Care Unit as a Stressor
par: Mustafa Sahin, et autres
Publié: (2018) -
Inverted Length-Biased Exponential Model: Statistical Inference and Modeling
par: Waleed Almutiry
Publié: (2021) -
Intraocular infections in the neonatal intensive care unit
par: Sisk RA, et autres
Publié: (2012)