FORECASTING SAVING DEPOSIT IN MALAYSIAN ISLAMIC BANKING: COMPARISON BETWEEN ARTIFICIAL NEURAL NETWORK AND ARIMA
The aim of this paper is to test the ability of artificial neural network (ANN) as an alternative method in time series forecasting and compared to autoregressive integrated moving average (ARIMA) in studying saving deposit in Malaysian Islamic banks. Artificial neural network is getting popular a...
Guardado en:
Autores principales: | Raditya Sukmana, Mahmud Iwan Solihin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Universitas Muhammadiyah Yogyakarta
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b408d634a0ba4e598e095321b0ecc9da |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Stacking Ensemble Methodology Using Deep Learning and ARIMA Models for Short-Term Load Forecasting
por: Pedro M. R. Bento, et al.
Publicado: (2021) -
Forecasting COVID-19 pandemic in Alberta, Canada using modified ARIMA models
por: Jian Sun, PhD
Publicado: (2021) -
SPI-Based Hybrid Hidden Markov–GA, ARIMA–GA, and ARIMA–GA–ANN Models for Meteorological Drought Forecasting
por: Mohammed Alquraish, et al.
Publicado: (2021) -
A comparative study of SIR Model, Linear Regression, Logistic Function and ARIMA Model for forecasting COVID-19 cases
por: Saina Abolmaali, et al.
Publicado: (2021) -
Forecasting of printing and writing paper consumption in Iran using artificial neural network and classical methods
por: Amir Tavakkoli, et al.
Publicado: (2015)