Adaptive grid‐driven probability hypothesis density filter for multi‐target tracking
Abstract The probability hypothesis density (PHD) filter and its cardinalised version PHD (CPHD) have been demonstratedasa class of promising algorithms for multi‐target tracking (MTT) with unknown,time‐varying number of targets. However, these methods can only be used in MTT systems with some prior...
Guardado en:
Autores principales: | Jinlong Yang, Jiuliu Tao, Yuan Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b40b453497ba44279a188ba993925912 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Siamese tracking combing frequency channel attention with adaptive template
por: Haibo Pang, et al.
Publicado: (2021) -
Robust adaptive Kalman filter for strapdown inertial navigation system dynamic alignment
por: Bing Zhu, et al.
Publicado: (2021) -
Adaptive energy efficient fuzzy: An adaptive and energy efficient fuzzy clustering algorithm for wireless sensor network‐based landslide detection system
por: Suhaib Ahmed, et al.
Publicado: (2021) -
Blind detection of cyclostationary signals based on multi‐antenna beamforming technology
por: Jie Wang, et al.
Publicado: (2021) -
Two‐dimensional adaptive beamforming for large planar array antennas based on weight matrix reconstruction
por: Wei Gao, et al.
Publicado: (2021)