An Optimized Hybrid Deep Learning Model to Detect COVID-19 Misleading Information
Fake news is challenging to detect due to mixing accurate and inaccurate information from reliable and unreliable sources. Social media is a data source that is not trustworthy all the time, especially in the COVID-19 outbreak. During the COVID-19 epidemic, fake news is widely spread. The best way t...
Guardado en:
Autores principales: | Bader Alouffi, Abdullah Alharbi, Radhya Sahal, Hager Saleh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b40f26d1c7b6438da037050df7eb9943 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multi-task deep learning for cardiac rhythm detection in wearable devices
por: Jessica Torres-Soto, et al.
Publicado: (2020) -
Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs
por: Rebecca M. Jones, et al.
Publicado: (2020) -
Recalibration of deep learning models for abnormality detection in smartphone-captured chest radiograph
por: Po-Chih Kuo, et al.
Publicado: (2021) -
Utilization of Nursing Defect Management Evaluation and Deep Learning in Nursing Process Reengineering Optimization
por: Yue Liu, et al.
Publicado: (2021) -
Detection of Fake News Text Classification on COVID-19 Using Deep Learning Approaches
por: Waqas Haider Bangyal, et al.
Publicado: (2021)