An Optimized Hybrid Deep Learning Model to Detect COVID-19 Misleading Information
Fake news is challenging to detect due to mixing accurate and inaccurate information from reliable and unreliable sources. Social media is a data source that is not trustworthy all the time, especially in the COVID-19 outbreak. During the COVID-19 epidemic, fake news is widely spread. The best way t...
Enregistré dans:
Auteurs principaux: | Bader Alouffi, Abdullah Alharbi, Radhya Sahal, Hager Saleh |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Hindawi Limited
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b40f26d1c7b6438da037050df7eb9943 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Multi-task deep learning for cardiac rhythm detection in wearable devices
par: Jessica Torres-Soto, et autres
Publié: (2020) -
Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs
par: Rebecca M. Jones, et autres
Publié: (2020) -
Recalibration of deep learning models for abnormality detection in smartphone-captured chest radiograph
par: Po-Chih Kuo, et autres
Publié: (2021) -
Utilization of Nursing Defect Management Evaluation and Deep Learning in Nursing Process Reengineering Optimization
par: Yue Liu, et autres
Publié: (2021) -
Detection of Fake News Text Classification on COVID-19 Using Deep Learning Approaches
par: Waqas Haider Bangyal, et autres
Publié: (2021)