Human TRIM gene expression in response to interferons.
<h4>Background</h4>Tripartite motif (TRIM) proteins constitute a family of proteins that share a conserved tripartite architecture. The recent discovery of the anti-HIV activity of TRIM5alpha in primate cells has stimulated much interest in the potential role of TRIM proteins in antivira...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2009
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b41400da254040758c1fd396562a3da0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | <h4>Background</h4>Tripartite motif (TRIM) proteins constitute a family of proteins that share a conserved tripartite architecture. The recent discovery of the anti-HIV activity of TRIM5alpha in primate cells has stimulated much interest in the potential role of TRIM proteins in antiviral activities and innate immunity.<h4>Principal findings</h4>To test if TRIM genes are up-regulated during antiviral immune responses, we performed a systematic analysis of TRIM gene expression in human primary lymphocytes and monocyte-derived macrophages in response to interferons (IFNs, type I and II) or following FcgammaR-mediated activation of macrophages. We found that 27 of the 72 human TRIM genes are sensitive to IFN. Our analysis identifies 9 additional TRIM genes that are up-regulated by IFNs, among which only 3 have previously been found to display an antiviral activity. Also, we found 2 TRIM proteins, TRIM9 and 54, to be specifically up-regulated in FcgammaR-activated macrophages.<h4>Conclusions</h4>Our results present the first comprehensive TRIM gene expression analysis in primary human immune cells, and suggest the involvement of additional TRIM proteins in regulating host antiviral activities. |
---|