Perturbation biology: inferring signaling networks in cellular systems.
We present a powerful experimental-computational technology for inferring network models that predict the response of cells to perturbations, and that may be useful in the design of combinatorial therapy against cancer. The experiments are systematic series of perturbations of cancer cell lines by t...
Guardado en:
Autores principales: | Evan J Molinelli, Anil Korkut, Weiqing Wang, Martin L Miller, Nicholas P Gauthier, Xiaohong Jing, Poorvi Kaushik, Qin He, Gordon Mills, David B Solit, Christine A Pratilas, Martin Weigt, Alfredo Braunstein, Andrea Pagnani, Riccardo Zecchina, Chris Sander |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b42abf9d37ee45299b42ecb7866bb94f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fast and accurate multivariate Gaussian modeling of protein families: predicting residue contacts and protein-interaction partners.
por: Carlo Baldassi, et al.
Publicado: (2014) -
Perturbation-based gene regulatory network inference to unravel oncogenic mechanisms
por: Daniel Morgan, et al.
Publicado: (2020) -
Efficient generative modeling of protein sequences using simple autoregressive models
por: Jeanne Trinquier, et al.
Publicado: (2021) -
Posterior association networks and functional modules inferred from rich phenotypes of gene perturbations.
por: Xin Wang, et al.
Publicado: (2012) -
An analytic approximation of the feasible space of metabolic networks
por: Alfredo Braunstein, et al.
Publicado: (2017)