Cost-effectiveness of CYP2C19 genotyping to guide antiplatelet therapy for acute minor stroke and high-risk transient ischemic attack
Abstract Dual antiplatelet therapy (DAPT) with clopidogrel plus aspirin within 48 h of acute minor strokes and transient ischemic attacks (TIAs) has been indicated to effectively reduce the rate of recurrent strokes. However, the efficacy of clopidogrel has been shown to be affected by cytochrome P4...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b4430848490d4ebf80e8332262cf0f2f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b4430848490d4ebf80e8332262cf0f2f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b4430848490d4ebf80e8332262cf0f2f2021-12-02T14:23:13ZCost-effectiveness of CYP2C19 genotyping to guide antiplatelet therapy for acute minor stroke and high-risk transient ischemic attack10.1038/s41598-021-86824-92045-2322https://doaj.org/article/b4430848490d4ebf80e8332262cf0f2f2021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-86824-9https://doaj.org/toc/2045-2322Abstract Dual antiplatelet therapy (DAPT) with clopidogrel plus aspirin within 48 h of acute minor strokes and transient ischemic attacks (TIAs) has been indicated to effectively reduce the rate of recurrent strokes. However, the efficacy of clopidogrel has been shown to be affected by cytochrome P450 2C19 (CYP2C19) polymorphisms. Patients carrying loss-of-function alleles (LoFAs) at a low risk of recurrence (ESRS < 3) cannot benefit from clopidogrel plus aspirin at all and may have an increased bleeding risk. In order to optimize antiplatelet therapy for these patients and avoid the waste of medical resources, it is important to identify the subgroups that genuinely benefit from DAPT with clopidogrel plus aspirin through CYP2C19 genotyping. This study sought to assess the cost-effectiveness of CYP2C19 genotyping to guide drug therapy for acute minor strokes or high-risk TIAs in China. A decision tree and Markov model were constructed to evaluate the cost-effectiveness of CYP2C19 genotyping. We used a healthcare payer perspective, and the primary outcomes included quality-adjusted life years (QALYs), costs and the incremental cost-effectiveness ratio (ICER). Sensitivity analyses were performed to evaluate the robustness of the results. CYP2C19 genotyping resulted in a lifetime gain of 0.031 QALYs at an additional cost of CNY 420.13 (US$ 59.85), yielding an ICER of CNY 13,552.74 (US$ 1930.59) per QALY gained. Probabilistic sensitivity analysis showed that genetic testing was more cost-effective in 95.7% of the simulations at the willingness-to-pay threshold of CNY 72,100 (GDP per capita, US$ 10,300) per QALY. Therefore, CYP2C19 genotyping to guide antiplatelet therapy for acute minor strokes and high-risk TIAs is highly cost-effective in China.Zeling CaiDe CaiRuiwen WangHeng WangZe YuFei GaoYuansheng LiuYingbo KangZhuomin WuNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Zeling Cai De Cai Ruiwen Wang Heng Wang Ze Yu Fei Gao Yuansheng Liu Yingbo Kang Zhuomin Wu Cost-effectiveness of CYP2C19 genotyping to guide antiplatelet therapy for acute minor stroke and high-risk transient ischemic attack |
description |
Abstract Dual antiplatelet therapy (DAPT) with clopidogrel plus aspirin within 48 h of acute minor strokes and transient ischemic attacks (TIAs) has been indicated to effectively reduce the rate of recurrent strokes. However, the efficacy of clopidogrel has been shown to be affected by cytochrome P450 2C19 (CYP2C19) polymorphisms. Patients carrying loss-of-function alleles (LoFAs) at a low risk of recurrence (ESRS < 3) cannot benefit from clopidogrel plus aspirin at all and may have an increased bleeding risk. In order to optimize antiplatelet therapy for these patients and avoid the waste of medical resources, it is important to identify the subgroups that genuinely benefit from DAPT with clopidogrel plus aspirin through CYP2C19 genotyping. This study sought to assess the cost-effectiveness of CYP2C19 genotyping to guide drug therapy for acute minor strokes or high-risk TIAs in China. A decision tree and Markov model were constructed to evaluate the cost-effectiveness of CYP2C19 genotyping. We used a healthcare payer perspective, and the primary outcomes included quality-adjusted life years (QALYs), costs and the incremental cost-effectiveness ratio (ICER). Sensitivity analyses were performed to evaluate the robustness of the results. CYP2C19 genotyping resulted in a lifetime gain of 0.031 QALYs at an additional cost of CNY 420.13 (US$ 59.85), yielding an ICER of CNY 13,552.74 (US$ 1930.59) per QALY gained. Probabilistic sensitivity analysis showed that genetic testing was more cost-effective in 95.7% of the simulations at the willingness-to-pay threshold of CNY 72,100 (GDP per capita, US$ 10,300) per QALY. Therefore, CYP2C19 genotyping to guide antiplatelet therapy for acute minor strokes and high-risk TIAs is highly cost-effective in China. |
format |
article |
author |
Zeling Cai De Cai Ruiwen Wang Heng Wang Ze Yu Fei Gao Yuansheng Liu Yingbo Kang Zhuomin Wu |
author_facet |
Zeling Cai De Cai Ruiwen Wang Heng Wang Ze Yu Fei Gao Yuansheng Liu Yingbo Kang Zhuomin Wu |
author_sort |
Zeling Cai |
title |
Cost-effectiveness of CYP2C19 genotyping to guide antiplatelet therapy for acute minor stroke and high-risk transient ischemic attack |
title_short |
Cost-effectiveness of CYP2C19 genotyping to guide antiplatelet therapy for acute minor stroke and high-risk transient ischemic attack |
title_full |
Cost-effectiveness of CYP2C19 genotyping to guide antiplatelet therapy for acute minor stroke and high-risk transient ischemic attack |
title_fullStr |
Cost-effectiveness of CYP2C19 genotyping to guide antiplatelet therapy for acute minor stroke and high-risk transient ischemic attack |
title_full_unstemmed |
Cost-effectiveness of CYP2C19 genotyping to guide antiplatelet therapy for acute minor stroke and high-risk transient ischemic attack |
title_sort |
cost-effectiveness of cyp2c19 genotyping to guide antiplatelet therapy for acute minor stroke and high-risk transient ischemic attack |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/b4430848490d4ebf80e8332262cf0f2f |
work_keys_str_mv |
AT zelingcai costeffectivenessofcyp2c19genotypingtoguideantiplatelettherapyforacuteminorstrokeandhighrisktransientischemicattack AT decai costeffectivenessofcyp2c19genotypingtoguideantiplatelettherapyforacuteminorstrokeandhighrisktransientischemicattack AT ruiwenwang costeffectivenessofcyp2c19genotypingtoguideantiplatelettherapyforacuteminorstrokeandhighrisktransientischemicattack AT hengwang costeffectivenessofcyp2c19genotypingtoguideantiplatelettherapyforacuteminorstrokeandhighrisktransientischemicattack AT zeyu costeffectivenessofcyp2c19genotypingtoguideantiplatelettherapyforacuteminorstrokeandhighrisktransientischemicattack AT feigao costeffectivenessofcyp2c19genotypingtoguideantiplatelettherapyforacuteminorstrokeandhighrisktransientischemicattack AT yuanshengliu costeffectivenessofcyp2c19genotypingtoguideantiplatelettherapyforacuteminorstrokeandhighrisktransientischemicattack AT yingbokang costeffectivenessofcyp2c19genotypingtoguideantiplatelettherapyforacuteminorstrokeandhighrisktransientischemicattack AT zhuominwu costeffectivenessofcyp2c19genotypingtoguideantiplatelettherapyforacuteminorstrokeandhighrisktransientischemicattack |
_version_ |
1718391446463053824 |