Statistically bias-corrected and downscaled climate models underestimate the adverse effects of extreme heat on U.S. maize yields
Historical annual maize yields in the U.S. are overestimated by CMIP5 models and underestimated by bias-corrected and downscaled models due to differences in temperature and precipitation hindcasts, according to a multi-model ensemble comparison.
Guardado en:
Autores principales: | David C. Lafferty, Ryan L. Sriver, Iman Haqiqi, Thomas W. Hertel, Klaus Keller, Robert E. Nicholas |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b44eae854a2a40f7af7844b31b055a33 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Is time a variable like the others in multivariate statistical downscaling and bias correction?
por: Y. Robin, et al.
Publicado: (2021) -
Impacts of compound hot–dry extremes on US soybean yields
por: R. Hamed, et al.
Publicado: (2021) -
Conservation agriculture increases the soil resilience and cotton yield stability in climate extremes of the southeast US
por: Amin Nouri, et al.
Publicado: (2021) -
How biased are our models? – a case study of the alpine region
por: D. Degen, et al.
Publicado: (2021) -
Projections of northern hemisphere extratropical climate underestimate internal variability and associated uncertainty
por: Christopher H. O’Reilly, et al.
Publicado: (2021)