Statistically bias-corrected and downscaled climate models underestimate the adverse effects of extreme heat on U.S. maize yields
Historical annual maize yields in the U.S. are overestimated by CMIP5 models and underestimated by bias-corrected and downscaled models due to differences in temperature and precipitation hindcasts, according to a multi-model ensemble comparison.
Enregistré dans:
Auteurs principaux: | David C. Lafferty, Ryan L. Sriver, Iman Haqiqi, Thomas W. Hertel, Klaus Keller, Robert E. Nicholas |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b44eae854a2a40f7af7844b31b055a33 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Is time a variable like the others in multivariate statistical downscaling and bias correction?
par: Y. Robin, et autres
Publié: (2021) -
Impacts of compound hot–dry extremes on US soybean yields
par: R. Hamed, et autres
Publié: (2021) -
Conservation agriculture increases the soil resilience and cotton yield stability in climate extremes of the southeast US
par: Amin Nouri, et autres
Publié: (2021) -
How biased are our models? – a case study of the alpine region
par: D. Degen, et autres
Publié: (2021) -
Projections of northern hemisphere extratropical climate underestimate internal variability and associated uncertainty
par: Christopher H. O’Reilly, et autres
Publié: (2021)