In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic
Abstract This article presents a millimeter-wave diagnostic for the in-situ monitoring of liquid metal jetting additive manufacturing systems. The diagnostic leverages a T-junction waveguide device to monitor impedance changes due to jetted metal droplets in real time. An analytical formulation for...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b44edb11975245e2a30ea41c1cf4e142 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b44edb11975245e2a30ea41c1cf4e142 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b44edb11975245e2a30ea41c1cf4e1422021-12-02T12:42:19ZIn-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic10.1038/s41598-020-79266-22045-2322https://doaj.org/article/b44edb11975245e2a30ea41c1cf4e1422020-12-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-79266-2https://doaj.org/toc/2045-2322Abstract This article presents a millimeter-wave diagnostic for the in-situ monitoring of liquid metal jetting additive manufacturing systems. The diagnostic leverages a T-junction waveguide device to monitor impedance changes due to jetted metal droplets in real time. An analytical formulation for the time-domain T-junction operation is presented and supported with a quasi-static full-wave electromagnetic simulation model. The approach is evaluated experimentally with metallic spheres of known diameters ranging from 0.79 to 3.18 mm. It is then demonstrated in a custom drop-on-demand liquid metal jetting system where effective droplet diameters ranging from 0.8 to 1.6 mm are detected. Experimental results demonstrate that this approach can provide information about droplet size, timing, and motion by monitoring a single parameter, the reflection coefficient amplitude at the input port. These results show the promise of the impedance diagnostic as a reliable in-situ characterization method for metal droplets in an advanced manufacturing system.Tammy ChangSaptarshi MukherjeeNicholas N. WatkinsDavid M. StobbeOwen MaysEmer V. BaluyotAndrew J. PascallJoseph W. TringeNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-9 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Tammy Chang Saptarshi Mukherjee Nicholas N. Watkins David M. Stobbe Owen Mays Emer V. Baluyot Andrew J. Pascall Joseph W. Tringe In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic |
description |
Abstract This article presents a millimeter-wave diagnostic for the in-situ monitoring of liquid metal jetting additive manufacturing systems. The diagnostic leverages a T-junction waveguide device to monitor impedance changes due to jetted metal droplets in real time. An analytical formulation for the time-domain T-junction operation is presented and supported with a quasi-static full-wave electromagnetic simulation model. The approach is evaluated experimentally with metallic spheres of known diameters ranging from 0.79 to 3.18 mm. It is then demonstrated in a custom drop-on-demand liquid metal jetting system where effective droplet diameters ranging from 0.8 to 1.6 mm are detected. Experimental results demonstrate that this approach can provide information about droplet size, timing, and motion by monitoring a single parameter, the reflection coefficient amplitude at the input port. These results show the promise of the impedance diagnostic as a reliable in-situ characterization method for metal droplets in an advanced manufacturing system. |
format |
article |
author |
Tammy Chang Saptarshi Mukherjee Nicholas N. Watkins David M. Stobbe Owen Mays Emer V. Baluyot Andrew J. Pascall Joseph W. Tringe |
author_facet |
Tammy Chang Saptarshi Mukherjee Nicholas N. Watkins David M. Stobbe Owen Mays Emer V. Baluyot Andrew J. Pascall Joseph W. Tringe |
author_sort |
Tammy Chang |
title |
In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic |
title_short |
In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic |
title_full |
In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic |
title_fullStr |
In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic |
title_full_unstemmed |
In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic |
title_sort |
in-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/b44edb11975245e2a30ea41c1cf4e142 |
work_keys_str_mv |
AT tammychang insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic AT saptarshimukherjee insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic AT nicholasnwatkins insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic AT davidmstobbe insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic AT owenmays insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic AT emervbaluyot insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic AT andrewjpascall insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic AT josephwtringe insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic |
_version_ |
1718393706136993792 |