In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic

Abstract This article presents a millimeter-wave diagnostic for the in-situ monitoring of liquid metal jetting additive manufacturing systems. The diagnostic leverages a T-junction waveguide device to monitor impedance changes due to jetted metal droplets in real time. An analytical formulation for...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tammy Chang, Saptarshi Mukherjee, Nicholas N. Watkins, David M. Stobbe, Owen Mays, Emer V. Baluyot, Andrew J. Pascall, Joseph W. Tringe
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b44edb11975245e2a30ea41c1cf4e142
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b44edb11975245e2a30ea41c1cf4e142
record_format dspace
spelling oai:doaj.org-article:b44edb11975245e2a30ea41c1cf4e1422021-12-02T12:42:19ZIn-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic10.1038/s41598-020-79266-22045-2322https://doaj.org/article/b44edb11975245e2a30ea41c1cf4e1422020-12-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-79266-2https://doaj.org/toc/2045-2322Abstract This article presents a millimeter-wave diagnostic for the in-situ monitoring of liquid metal jetting additive manufacturing systems. The diagnostic leverages a T-junction waveguide device to monitor impedance changes due to jetted metal droplets in real time. An analytical formulation for the time-domain T-junction operation is presented and supported with a quasi-static full-wave electromagnetic simulation model. The approach is evaluated experimentally with metallic spheres of known diameters ranging from 0.79 to 3.18 mm. It is then demonstrated in a custom drop-on-demand liquid metal jetting system where effective droplet diameters ranging from 0.8 to 1.6 mm are detected. Experimental results demonstrate that this approach can provide information about droplet size, timing, and motion by monitoring a single parameter, the reflection coefficient amplitude at the input port. These results show the promise of the impedance diagnostic as a reliable in-situ characterization method for metal droplets in an advanced manufacturing system.Tammy ChangSaptarshi MukherjeeNicholas N. WatkinsDavid M. StobbeOwen MaysEmer V. BaluyotAndrew J. PascallJoseph W. TringeNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-9 (2020)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Tammy Chang
Saptarshi Mukherjee
Nicholas N. Watkins
David M. Stobbe
Owen Mays
Emer V. Baluyot
Andrew J. Pascall
Joseph W. Tringe
In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic
description Abstract This article presents a millimeter-wave diagnostic for the in-situ monitoring of liquid metal jetting additive manufacturing systems. The diagnostic leverages a T-junction waveguide device to monitor impedance changes due to jetted metal droplets in real time. An analytical formulation for the time-domain T-junction operation is presented and supported with a quasi-static full-wave electromagnetic simulation model. The approach is evaluated experimentally with metallic spheres of known diameters ranging from 0.79 to 3.18 mm. It is then demonstrated in a custom drop-on-demand liquid metal jetting system where effective droplet diameters ranging from 0.8 to 1.6 mm are detected. Experimental results demonstrate that this approach can provide information about droplet size, timing, and motion by monitoring a single parameter, the reflection coefficient amplitude at the input port. These results show the promise of the impedance diagnostic as a reliable in-situ characterization method for metal droplets in an advanced manufacturing system.
format article
author Tammy Chang
Saptarshi Mukherjee
Nicholas N. Watkins
David M. Stobbe
Owen Mays
Emer V. Baluyot
Andrew J. Pascall
Joseph W. Tringe
author_facet Tammy Chang
Saptarshi Mukherjee
Nicholas N. Watkins
David M. Stobbe
Owen Mays
Emer V. Baluyot
Andrew J. Pascall
Joseph W. Tringe
author_sort Tammy Chang
title In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic
title_short In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic
title_full In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic
title_fullStr In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic
title_full_unstemmed In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic
title_sort in-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/b44edb11975245e2a30ea41c1cf4e142
work_keys_str_mv AT tammychang insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic
AT saptarshimukherjee insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic
AT nicholasnwatkins insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic
AT davidmstobbe insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic
AT owenmays insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic
AT emervbaluyot insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic
AT andrewjpascall insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic
AT josephwtringe insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic
_version_ 1718393706136993792