The effect of polytetrafluoroethylene particle size on the properties of biodegradable poly(butylene succinate)-based composites

Abstract Poly(butylene succinate) (PBS)/polytetrafluoroethylene (PTFE) composites, including three types of PTFE powders, were prepared by melt blending using a HAAKE torque rheometer. Microcellular foams were successfully fabricated by batch foaming with supercritical fluids (scCO2). The effects of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shudong Chen, Xiangfang Peng, Lihong Geng, Hankun Wang, Jialin Lin, Binyi Chen, An Huang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b45ca49f812d4b63af7f1561c83344de
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b45ca49f812d4b63af7f1561c83344de
record_format dspace
spelling oai:doaj.org-article:b45ca49f812d4b63af7f1561c83344de2021-12-02T17:04:36ZThe effect of polytetrafluoroethylene particle size on the properties of biodegradable poly(butylene succinate)-based composites10.1038/s41598-021-86307-x2045-2322https://doaj.org/article/b45ca49f812d4b63af7f1561c83344de2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-86307-xhttps://doaj.org/toc/2045-2322Abstract Poly(butylene succinate) (PBS)/polytetrafluoroethylene (PTFE) composites, including three types of PTFE powders, were prepared by melt blending using a HAAKE torque rheometer. Microcellular foams were successfully fabricated by batch foaming with supercritical fluids (scCO2). The effects of PTFE powder type on crystallization, rheological properties and foaming behavior were studied. PTFE L-5 and PTFE JH-220 powders showed good dispersion in the PBS matrix, and PTFE FA-500 powder underwent fibrillation during the melt blending process. All three PTFE powders gradually increased the crystallization temperature of PBS from 78.2 to 91.8 ℃ and the crystallinity from 45.6 to 61.7% without apparent changes in the crystal structure. Rheological results revealed that PBS/PTFE composites had a higher storage modulus, loss modulus, and complex viscosity than those of pure PBS. In particular, the complex viscosity of the PBS/P500 composite increased by an order of magnitude in the low-frequency region. The foamed structure of PBS was obviously improved by adding PTFE powder, and the effect of fibrillated PTFE FA-500 was the most remarkable, with a pore mean diameter of 5.46 μm and a pore density of 1.86 × 109 cells/cm3 (neat PBS foam: 32.49 μm and 1.95 × 107 cells/cm3). Moreover, PBS/P500 foam always guarantees hydrophobicity.Shudong ChenXiangfang PengLihong GengHankun WangJialin LinBinyi ChenAn HuangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Shudong Chen
Xiangfang Peng
Lihong Geng
Hankun Wang
Jialin Lin
Binyi Chen
An Huang
The effect of polytetrafluoroethylene particle size on the properties of biodegradable poly(butylene succinate)-based composites
description Abstract Poly(butylene succinate) (PBS)/polytetrafluoroethylene (PTFE) composites, including three types of PTFE powders, were prepared by melt blending using a HAAKE torque rheometer. Microcellular foams were successfully fabricated by batch foaming with supercritical fluids (scCO2). The effects of PTFE powder type on crystallization, rheological properties and foaming behavior were studied. PTFE L-5 and PTFE JH-220 powders showed good dispersion in the PBS matrix, and PTFE FA-500 powder underwent fibrillation during the melt blending process. All three PTFE powders gradually increased the crystallization temperature of PBS from 78.2 to 91.8 ℃ and the crystallinity from 45.6 to 61.7% without apparent changes in the crystal structure. Rheological results revealed that PBS/PTFE composites had a higher storage modulus, loss modulus, and complex viscosity than those of pure PBS. In particular, the complex viscosity of the PBS/P500 composite increased by an order of magnitude in the low-frequency region. The foamed structure of PBS was obviously improved by adding PTFE powder, and the effect of fibrillated PTFE FA-500 was the most remarkable, with a pore mean diameter of 5.46 μm and a pore density of 1.86 × 109 cells/cm3 (neat PBS foam: 32.49 μm and 1.95 × 107 cells/cm3). Moreover, PBS/P500 foam always guarantees hydrophobicity.
format article
author Shudong Chen
Xiangfang Peng
Lihong Geng
Hankun Wang
Jialin Lin
Binyi Chen
An Huang
author_facet Shudong Chen
Xiangfang Peng
Lihong Geng
Hankun Wang
Jialin Lin
Binyi Chen
An Huang
author_sort Shudong Chen
title The effect of polytetrafluoroethylene particle size on the properties of biodegradable poly(butylene succinate)-based composites
title_short The effect of polytetrafluoroethylene particle size on the properties of biodegradable poly(butylene succinate)-based composites
title_full The effect of polytetrafluoroethylene particle size on the properties of biodegradable poly(butylene succinate)-based composites
title_fullStr The effect of polytetrafluoroethylene particle size on the properties of biodegradable poly(butylene succinate)-based composites
title_full_unstemmed The effect of polytetrafluoroethylene particle size on the properties of biodegradable poly(butylene succinate)-based composites
title_sort effect of polytetrafluoroethylene particle size on the properties of biodegradable poly(butylene succinate)-based composites
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/b45ca49f812d4b63af7f1561c83344de
work_keys_str_mv AT shudongchen theeffectofpolytetrafluoroethyleneparticlesizeonthepropertiesofbiodegradablepolybutylenesuccinatebasedcomposites
AT xiangfangpeng theeffectofpolytetrafluoroethyleneparticlesizeonthepropertiesofbiodegradablepolybutylenesuccinatebasedcomposites
AT lihonggeng theeffectofpolytetrafluoroethyleneparticlesizeonthepropertiesofbiodegradablepolybutylenesuccinatebasedcomposites
AT hankunwang theeffectofpolytetrafluoroethyleneparticlesizeonthepropertiesofbiodegradablepolybutylenesuccinatebasedcomposites
AT jialinlin theeffectofpolytetrafluoroethyleneparticlesizeonthepropertiesofbiodegradablepolybutylenesuccinatebasedcomposites
AT binyichen theeffectofpolytetrafluoroethyleneparticlesizeonthepropertiesofbiodegradablepolybutylenesuccinatebasedcomposites
AT anhuang theeffectofpolytetrafluoroethyleneparticlesizeonthepropertiesofbiodegradablepolybutylenesuccinatebasedcomposites
AT shudongchen effectofpolytetrafluoroethyleneparticlesizeonthepropertiesofbiodegradablepolybutylenesuccinatebasedcomposites
AT xiangfangpeng effectofpolytetrafluoroethyleneparticlesizeonthepropertiesofbiodegradablepolybutylenesuccinatebasedcomposites
AT lihonggeng effectofpolytetrafluoroethyleneparticlesizeonthepropertiesofbiodegradablepolybutylenesuccinatebasedcomposites
AT hankunwang effectofpolytetrafluoroethyleneparticlesizeonthepropertiesofbiodegradablepolybutylenesuccinatebasedcomposites
AT jialinlin effectofpolytetrafluoroethyleneparticlesizeonthepropertiesofbiodegradablepolybutylenesuccinatebasedcomposites
AT binyichen effectofpolytetrafluoroethyleneparticlesizeonthepropertiesofbiodegradablepolybutylenesuccinatebasedcomposites
AT anhuang effectofpolytetrafluoroethyleneparticlesizeonthepropertiesofbiodegradablepolybutylenesuccinatebasedcomposites
_version_ 1718381869762871296