Uncertainty quantification and composition optimization for alloy additive manufacturing through a CALPHAD-based ICME framework
Abstract During powder production, the pre-alloyed powder composition often deviates from the target composition leading to undesirable properties of additive manufacturing (AM) components. Therefore, we developed a method to perform high-throughput calculation and uncertainty quantification by usin...
Enregistré dans:
Auteurs principaux: | Xin Wang, Wei Xiong |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b45cd9022d2948029f7fae57cec82c1f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Ensemble learning-iterative training machine learning for uncertainty quantification and automated experiment in atom-resolved microscopy
par: Ayana Ghosh, et autres
Publié: (2021) -
Mechanistic data-driven prediction of as-built mechanical properties in metal additive manufacturing
par: Xiaoyu Xie, et autres
Publié: (2021) -
PRISMS-Fatigue computational framework for fatigue analysis in polycrystalline metals and alloys
par: Mohammadreza Yaghoobi, et autres
Publié: (2021) -
A Bayesian framework for adsorption energy prediction on bimetallic alloy catalysts
par: Osman Mamun, et autres
Publié: (2020) -
Phase-field modeling of grain evolutions in additive manufacturing from nucleation, growth, to coarsening
par: Min Yang, et autres
Publié: (2021)