Uncertainty quantification and composition optimization for alloy additive manufacturing through a CALPHAD-based ICME framework
Abstract During powder production, the pre-alloyed powder composition often deviates from the target composition leading to undesirable properties of additive manufacturing (AM) components. Therefore, we developed a method to perform high-throughput calculation and uncertainty quantification by usin...
Guardado en:
Autores principales: | Xin Wang, Wei Xiong |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b45cd9022d2948029f7fae57cec82c1f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Ensemble learning-iterative training machine learning for uncertainty quantification and automated experiment in atom-resolved microscopy
por: Ayana Ghosh, et al.
Publicado: (2021) -
Mechanistic data-driven prediction of as-built mechanical properties in metal additive manufacturing
por: Xiaoyu Xie, et al.
Publicado: (2021) -
PRISMS-Fatigue computational framework for fatigue analysis in polycrystalline metals and alloys
por: Mohammadreza Yaghoobi, et al.
Publicado: (2021) -
A Bayesian framework for adsorption energy prediction on bimetallic alloy catalysts
por: Osman Mamun, et al.
Publicado: (2020) -
Phase-field modeling of grain evolutions in additive manufacturing from nucleation, growth, to coarsening
por: Min Yang, et al.
Publicado: (2021)