Deep Learning Approaches for Continuous Authentication Based on Activity Patterns Using Mobile Sensing
Smartphones as ubiquitous gadgets are rapidly becoming more intelligent and context-aware as sensing, networking, and processing capabilities advance. These devices provide users with a comprehensive platform to undertake activities such as socializing, communicating, sending and receiving e-mails,...
Guardado en:
Autores principales: | Sakorn Mekruksavanich, Anuchit Jitpattanakul |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b466a1a28c74470791d7c3117ed0bc1b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Prediction of Hospital Readmission from Longitudinal Mobile Data Streams
por: Chen Qian, et al.
Publicado: (2021) -
Exploring Post COVID-19 Outbreak Intradaily Mobility Pattern Change in College Students: A GPS-Focused Smartphone Sensing Study
por: Congyu Wu, et al.
Publicado: (2021) -
A CAN-Bus Lightweight Authentication Scheme
por: Jia-Ning Luo, et al.
Publicado: (2021) -
Event Detection for Distributed Acoustic Sensing: Combining Knowledge-Based, Classical Machine Learning, and Deep Learning Approaches
por: Mugdim Bublin
Publicado: (2021) -
ECG Authentication Based on Non-Linear Normalization under Various Physiological Conditions
por: Ho Bin Hwang, et al.
Publicado: (2021)