Deep Learning Approaches for Continuous Authentication Based on Activity Patterns Using Mobile Sensing
Smartphones as ubiquitous gadgets are rapidly becoming more intelligent and context-aware as sensing, networking, and processing capabilities advance. These devices provide users with a comprehensive platform to undertake activities such as socializing, communicating, sending and receiving e-mails,...
Enregistré dans:
Auteurs principaux: | Sakorn Mekruksavanich, Anuchit Jitpattanakul |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b466a1a28c74470791d7c3117ed0bc1b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Prediction of Hospital Readmission from Longitudinal Mobile Data Streams
par: Chen Qian, et autres
Publié: (2021) -
Exploring Post COVID-19 Outbreak Intradaily Mobility Pattern Change in College Students: A GPS-Focused Smartphone Sensing Study
par: Congyu Wu, et autres
Publié: (2021) -
A CAN-Bus Lightweight Authentication Scheme
par: Jia-Ning Luo, et autres
Publié: (2021) -
Event Detection for Distributed Acoustic Sensing: Combining Knowledge-Based, Classical Machine Learning, and Deep Learning Approaches
par: Mugdim Bublin
Publié: (2021) -
ECG Authentication Based on Non-Linear Normalization under Various Physiological Conditions
par: Ho Bin Hwang, et autres
Publié: (2021)