Verification of the electromagnetic deep-penetration effect in the real world
Abstract The deep penetration of electromagnetic waves into lossy media can be obtained by properly generating inhomogeneous waves. In this work, for the very first time, we demonstrate the physical implementation and the practical relevance of this phenomenon. A thorough numerical investigation of...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b4845694b1d1430ba93fefeda3624883 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b4845694b1d1430ba93fefeda3624883 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b4845694b1d1430ba93fefeda36248832021-12-02T14:53:49ZVerification of the electromagnetic deep-penetration effect in the real world10.1038/s41598-021-95080-w2045-2322https://doaj.org/article/b4845694b1d1430ba93fefeda36248832021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-95080-whttps://doaj.org/toc/2045-2322Abstract The deep penetration of electromagnetic waves into lossy media can be obtained by properly generating inhomogeneous waves. In this work, for the very first time, we demonstrate the physical implementation and the practical relevance of this phenomenon. A thorough numerical investigation of the deep-penetration effects has been performed by designing and comparing three distinct practical radiators, emitting either homogeneous or inhomogeneous waves. As concerns the latter kind, a typical Menzel microstrip antenna is first used to radiate improper leaky waves. Then, a completely new approach based on an optimized 3-D horn TEM antenna applied to a lossy prism is described, which may find applications even at optical frequencies. The effectiveness of the proposed radiators is measured using different algorithms to consider distinct aspects of the propagation in lossy media. We finally demonstrate that the deep penetration is possible, by extending the ideal and theoretical evidence to practical relevance, and discuss both achievements and limits obtained through numerical simulations on the designed antennas.Paolo BaccarelliAlessandro CalcaterraFabrizio FrezzaFabio ManginiNicholas RicciardellaPatrizio SimeoniNicola TedeschiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Paolo Baccarelli Alessandro Calcaterra Fabrizio Frezza Fabio Mangini Nicholas Ricciardella Patrizio Simeoni Nicola Tedeschi Verification of the electromagnetic deep-penetration effect in the real world |
description |
Abstract The deep penetration of electromagnetic waves into lossy media can be obtained by properly generating inhomogeneous waves. In this work, for the very first time, we demonstrate the physical implementation and the practical relevance of this phenomenon. A thorough numerical investigation of the deep-penetration effects has been performed by designing and comparing three distinct practical radiators, emitting either homogeneous or inhomogeneous waves. As concerns the latter kind, a typical Menzel microstrip antenna is first used to radiate improper leaky waves. Then, a completely new approach based on an optimized 3-D horn TEM antenna applied to a lossy prism is described, which may find applications even at optical frequencies. The effectiveness of the proposed radiators is measured using different algorithms to consider distinct aspects of the propagation in lossy media. We finally demonstrate that the deep penetration is possible, by extending the ideal and theoretical evidence to practical relevance, and discuss both achievements and limits obtained through numerical simulations on the designed antennas. |
format |
article |
author |
Paolo Baccarelli Alessandro Calcaterra Fabrizio Frezza Fabio Mangini Nicholas Ricciardella Patrizio Simeoni Nicola Tedeschi |
author_facet |
Paolo Baccarelli Alessandro Calcaterra Fabrizio Frezza Fabio Mangini Nicholas Ricciardella Patrizio Simeoni Nicola Tedeschi |
author_sort |
Paolo Baccarelli |
title |
Verification of the electromagnetic deep-penetration effect in the real world |
title_short |
Verification of the electromagnetic deep-penetration effect in the real world |
title_full |
Verification of the electromagnetic deep-penetration effect in the real world |
title_fullStr |
Verification of the electromagnetic deep-penetration effect in the real world |
title_full_unstemmed |
Verification of the electromagnetic deep-penetration effect in the real world |
title_sort |
verification of the electromagnetic deep-penetration effect in the real world |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/b4845694b1d1430ba93fefeda3624883 |
work_keys_str_mv |
AT paolobaccarelli verificationoftheelectromagneticdeeppenetrationeffectintherealworld AT alessandrocalcaterra verificationoftheelectromagneticdeeppenetrationeffectintherealworld AT fabriziofrezza verificationoftheelectromagneticdeeppenetrationeffectintherealworld AT fabiomangini verificationoftheelectromagneticdeeppenetrationeffectintherealworld AT nicholasricciardella verificationoftheelectromagneticdeeppenetrationeffectintherealworld AT patriziosimeoni verificationoftheelectromagneticdeeppenetrationeffectintherealworld AT nicolatedeschi verificationoftheelectromagneticdeeppenetrationeffectintherealworld |
_version_ |
1718389406052646912 |