Comprehensive analysis of human protein N-termini enables assessment of various protein forms

Abstract Various forms of protein (proteoforms) are generated by genetic variations, alternative splicing, alternative translation initiation, co- or post-translational modification and proteolysis. Different proteoforms are in part discovered by characterizing their N-terminal sequences. Here, we i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jeonghun Yeom, Shinyeong Ju, YunJin Choi, Eunok Paek, Cheolju Lee
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b48742968cde47cb918ada2680e8d341
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b48742968cde47cb918ada2680e8d341
record_format dspace
spelling oai:doaj.org-article:b48742968cde47cb918ada2680e8d3412021-12-02T15:05:50ZComprehensive analysis of human protein N-termini enables assessment of various protein forms10.1038/s41598-017-06314-92045-2322https://doaj.org/article/b48742968cde47cb918ada2680e8d3412017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-06314-9https://doaj.org/toc/2045-2322Abstract Various forms of protein (proteoforms) are generated by genetic variations, alternative splicing, alternative translation initiation, co- or post-translational modification and proteolysis. Different proteoforms are in part discovered by characterizing their N-terminal sequences. Here, we introduce an N-terminal-peptide-enrichment method, Nrich. Filter-aided negative selection formed the basis for the use of two N-blocking reagents and two endoproteases in this method. We identified 6,525 acetylated (or partially acetylated) and 6,570 free protein N-termini arising from 5,727 proteins in HEK293T human cells. The protein N-termini included translation initiation sites annotated in the UniProtKB database, putative alternative translational initiation sites, and N-terminal sites exposed after signal/transit/pro-peptide removal or unknown processing, revealing various proteoforms in cells. In addition, 46 novel protein N-termini were identified in 5′ untranslated region (UTR) sequence with pseudo start codons. Our data showing the observation of N-terminal sequences of mature proteins constitutes a useful resource that may provide information for a better understanding of various proteoforms in cells.Jeonghun YeomShinyeong JuYunJin ChoiEunok PaekCheolju LeeNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-13 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Jeonghun Yeom
Shinyeong Ju
YunJin Choi
Eunok Paek
Cheolju Lee
Comprehensive analysis of human protein N-termini enables assessment of various protein forms
description Abstract Various forms of protein (proteoforms) are generated by genetic variations, alternative splicing, alternative translation initiation, co- or post-translational modification and proteolysis. Different proteoforms are in part discovered by characterizing their N-terminal sequences. Here, we introduce an N-terminal-peptide-enrichment method, Nrich. Filter-aided negative selection formed the basis for the use of two N-blocking reagents and two endoproteases in this method. We identified 6,525 acetylated (or partially acetylated) and 6,570 free protein N-termini arising from 5,727 proteins in HEK293T human cells. The protein N-termini included translation initiation sites annotated in the UniProtKB database, putative alternative translational initiation sites, and N-terminal sites exposed after signal/transit/pro-peptide removal or unknown processing, revealing various proteoforms in cells. In addition, 46 novel protein N-termini were identified in 5′ untranslated region (UTR) sequence with pseudo start codons. Our data showing the observation of N-terminal sequences of mature proteins constitutes a useful resource that may provide information for a better understanding of various proteoforms in cells.
format article
author Jeonghun Yeom
Shinyeong Ju
YunJin Choi
Eunok Paek
Cheolju Lee
author_facet Jeonghun Yeom
Shinyeong Ju
YunJin Choi
Eunok Paek
Cheolju Lee
author_sort Jeonghun Yeom
title Comprehensive analysis of human protein N-termini enables assessment of various protein forms
title_short Comprehensive analysis of human protein N-termini enables assessment of various protein forms
title_full Comprehensive analysis of human protein N-termini enables assessment of various protein forms
title_fullStr Comprehensive analysis of human protein N-termini enables assessment of various protein forms
title_full_unstemmed Comprehensive analysis of human protein N-termini enables assessment of various protein forms
title_sort comprehensive analysis of human protein n-termini enables assessment of various protein forms
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/b48742968cde47cb918ada2680e8d341
work_keys_str_mv AT jeonghunyeom comprehensiveanalysisofhumanproteinnterminienablesassessmentofvariousproteinforms
AT shinyeongju comprehensiveanalysisofhumanproteinnterminienablesassessmentofvariousproteinforms
AT yunjinchoi comprehensiveanalysisofhumanproteinnterminienablesassessmentofvariousproteinforms
AT eunokpaek comprehensiveanalysisofhumanproteinnterminienablesassessmentofvariousproteinforms
AT cheoljulee comprehensiveanalysisofhumanproteinnterminienablesassessmentofvariousproteinforms
_version_ 1718388726771482624