Hydrogenated vacancies lock dislocations in aluminium
Due to its high diffusivity, hydrogen is considered a weak inhibitor or even a promoter of dislocation movements in metals and alloys. Here the authors quantitatively demonstrate that after exposing aluminium to hydrogen, mobile dislocations can lose mobility, due to segregation of hydrogenated vaca...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b4b2a946745c43afa380d149c924cc3d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Due to its high diffusivity, hydrogen is considered a weak inhibitor or even a promoter of dislocation movements in metals and alloys. Here the authors quantitatively demonstrate that after exposing aluminium to hydrogen, mobile dislocations can lose mobility, due to segregation of hydrogenated vacancies to dislocations. |
---|