Deep learning-based automated and universal bubble detection and mask extraction in complex two-phase flows
Abstract While investigating multiphase flows experimentally, the spatiotemporal variation in the interfacial shape between different phases must be measured to analyze the transport phenomena. For this, numerous image processing techniques have been proposed, showing good performance. However, they...
Guardado en:
Autores principales: | Yewon Kim, Hyungmin Park |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b4c2274d734e4dd996b87f79e18e4921 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Bubble behavior in horizontal two-phase flow under flow rate fluctuation
por: Jun-ichi TAKANO, et al.
Publicado: (2014) -
Two-Phase Deep Learning-Based EDoS Detection System
por: Chien-Nguyen Nhu, et al.
Publicado: (2021) -
Automated Generation of Masked Hardware
por: David Knichel, et al.
Publicado: (2021) -
Influence of Bubble Deformation on the Signal Characteristics Generated Using an Optical Fiber Gas–liquid Two-Phase Flow Sensor
por: Yu Ma, et al.
Publicado: (2021) -
Single-bubble EHD behavior into water two-phase flow under electric-field stress and gravitational acceleration using PFM
por: Maryam Aliakbary Mianmahale, et al.
Publicado: (2021)