Deep learning-based automated and universal bubble detection and mask extraction in complex two-phase flows
Abstract While investigating multiphase flows experimentally, the spatiotemporal variation in the interfacial shape between different phases must be measured to analyze the transport phenomena. For this, numerous image processing techniques have been proposed, showing good performance. However, they...
Enregistré dans:
Auteurs principaux: | Yewon Kim, Hyungmin Park |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b4c2274d734e4dd996b87f79e18e4921 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Bubble behavior in horizontal two-phase flow under flow rate fluctuation
par: Jun-ichi TAKANO, et autres
Publié: (2014) -
Two-Phase Deep Learning-Based EDoS Detection System
par: Chien-Nguyen Nhu, et autres
Publié: (2021) -
Automated Generation of Masked Hardware
par: David Knichel, et autres
Publié: (2021) -
Influence of Bubble Deformation on the Signal Characteristics Generated Using an Optical Fiber Gas–liquid Two-Phase Flow Sensor
par: Yu Ma, et autres
Publié: (2021) -
Single-bubble EHD behavior into water two-phase flow under electric-field stress and gravitational acceleration using PFM
par: Maryam Aliakbary Mianmahale, et autres
Publié: (2021)