Pd/ZnO nanorods based sensor for highly selective detection of extremely low concentration hydrogen
Abstract We report highly hydrogen selective Pd contacted ZnO nanorods based sensor detecting low concentration even at low operating temperature of 50 °C. The sensor performance was investigated for various gases such as H2, CH4, H2S and CO2 at different operating temperatures from 50 °C to 175 °C...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b4c47eac25f847c49aab2f14088798c8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b4c47eac25f847c49aab2f14088798c8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b4c47eac25f847c49aab2f14088798c82021-12-02T11:52:30ZPd/ZnO nanorods based sensor for highly selective detection of extremely low concentration hydrogen10.1038/s41598-017-00362-x2045-2322https://doaj.org/article/b4c47eac25f847c49aab2f14088798c82017-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-00362-xhttps://doaj.org/toc/2045-2322Abstract We report highly hydrogen selective Pd contacted ZnO nanorods based sensor detecting low concentration even at low operating temperature of 50 °C. The sensor performance was investigated for various gases such as H2, CH4, H2S and CO2 at different operating temperatures from 50 °C to 175 °C for various gas concentrations ranging from 7 ppm to 10,000 ppm (1%). The sensor is highly efficient as it detects hydrogen even at low concentration of ~7 ppm and at operating temperature of 50 °C. The sensor’s minimum limit of detection and relative response at 175 °C were found 7 ppm with ~38.7% for H2, 110 ppm with ~6.08% for CH4, 500 ppm with ~10.06% for H2S and 1% with ~11.87% for CO2. Here, Pd exhibits dual characteristics as metal contact and excellent catalyst to hydrogen molecules. The activation energy was calculated for all the gases and found lowest ~3.658 kJ/mol for H2. Low activation energy accelerates desorption reactions and enhances the sensor’s performance.Mohit KumarVijendra Singh BhatiSapana RanwaJitendra SinghMahesh kumarNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-9 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Mohit Kumar Vijendra Singh Bhati Sapana Ranwa Jitendra Singh Mahesh kumar Pd/ZnO nanorods based sensor for highly selective detection of extremely low concentration hydrogen |
description |
Abstract We report highly hydrogen selective Pd contacted ZnO nanorods based sensor detecting low concentration even at low operating temperature of 50 °C. The sensor performance was investigated for various gases such as H2, CH4, H2S and CO2 at different operating temperatures from 50 °C to 175 °C for various gas concentrations ranging from 7 ppm to 10,000 ppm (1%). The sensor is highly efficient as it detects hydrogen even at low concentration of ~7 ppm and at operating temperature of 50 °C. The sensor’s minimum limit of detection and relative response at 175 °C were found 7 ppm with ~38.7% for H2, 110 ppm with ~6.08% for CH4, 500 ppm with ~10.06% for H2S and 1% with ~11.87% for CO2. Here, Pd exhibits dual characteristics as metal contact and excellent catalyst to hydrogen molecules. The activation energy was calculated for all the gases and found lowest ~3.658 kJ/mol for H2. Low activation energy accelerates desorption reactions and enhances the sensor’s performance. |
format |
article |
author |
Mohit Kumar Vijendra Singh Bhati Sapana Ranwa Jitendra Singh Mahesh kumar |
author_facet |
Mohit Kumar Vijendra Singh Bhati Sapana Ranwa Jitendra Singh Mahesh kumar |
author_sort |
Mohit Kumar |
title |
Pd/ZnO nanorods based sensor for highly selective detection of extremely low concentration hydrogen |
title_short |
Pd/ZnO nanorods based sensor for highly selective detection of extremely low concentration hydrogen |
title_full |
Pd/ZnO nanorods based sensor for highly selective detection of extremely low concentration hydrogen |
title_fullStr |
Pd/ZnO nanorods based sensor for highly selective detection of extremely low concentration hydrogen |
title_full_unstemmed |
Pd/ZnO nanorods based sensor for highly selective detection of extremely low concentration hydrogen |
title_sort |
pd/zno nanorods based sensor for highly selective detection of extremely low concentration hydrogen |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/b4c47eac25f847c49aab2f14088798c8 |
work_keys_str_mv |
AT mohitkumar pdznonanorodsbasedsensorforhighlyselectivedetectionofextremelylowconcentrationhydrogen AT vijendrasinghbhati pdznonanorodsbasedsensorforhighlyselectivedetectionofextremelylowconcentrationhydrogen AT sapanaranwa pdznonanorodsbasedsensorforhighlyselectivedetectionofextremelylowconcentrationhydrogen AT jitendrasingh pdznonanorodsbasedsensorforhighlyselectivedetectionofextremelylowconcentrationhydrogen AT maheshkumar pdznonanorodsbasedsensorforhighlyselectivedetectionofextremelylowconcentrationhydrogen |
_version_ |
1718395063867801600 |