Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting
Efficient harvest of solar energy beyond the silicon absorption edge of 1100 nm by semiconductor solar cells remains a challenge. Here Sun et al. mix high multi-bandgap lead sulfide colloidal quantum dot ensembles to further increase both short circuit current and open circuit voltage.
Guardado en:
Autores principales: | Bin Sun, Olivier Ouellette, F. Pelayo García de Arquer, Oleksandr Voznyy, Younghoon Kim, Mingyang Wei, Andrew H. Proppe, Makhsud I. Saidaminov, Jixian Xu, Mengxia Liu, Peicheng Li, James Z. Fan, Jea Woong Jo, Hairen Tan, Furui Tan, Sjoerd Hoogland, Zheng Hong Lu, Shana O. Kelley, Edward H. Sargent |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b4d5386f295746409512af80cd536df6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics
por: Min-Jae Choi, et al.
Publicado: (2020) -
Contactless measurements of photocarrier transport properties in perovskite single crystals
por: Xiwen Gong, et al.
Publicado: (2019) -
Mixed-quantum-dot solar cells
por: Zhenyu Yang, et al.
Publicado: (2017) -
Field-emission from quantum-dot-in-perovskite solids
por: F. Pelayo García de Arquer, et al.
Publicado: (2017) -
Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites
por: Hairen Tan, et al.
Publicado: (2018)