Defining quantification methods and optimizing protocols for microarray hybridization of circulating microRNAs

Abstract MicroRNAs (miRNAs) have emerged as promising biomarkers of disease. Their potential use in clinical practice requires standardized protocols with very low miRNA concentrations, particularly in plasma samples. Here we tested the most appropriate method for miRNA quantification and validated...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Anna Garcia-Elias, Leonor Alloza, Eulàlia Puigdecanet, Lara Nonell, Marta Tajes, Joao Curado, Cristina Enjuanes, Oscar Díaz, Jordi Bruguera, Julio Martí-Almor, Josep Comín-Colet, Begoña Benito
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b4e3539c8ab74c0ca848f212ca0dab8a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b4e3539c8ab74c0ca848f212ca0dab8a
record_format dspace
spelling oai:doaj.org-article:b4e3539c8ab74c0ca848f212ca0dab8a2021-12-02T16:06:32ZDefining quantification methods and optimizing protocols for microarray hybridization of circulating microRNAs10.1038/s41598-017-08134-32045-2322https://doaj.org/article/b4e3539c8ab74c0ca848f212ca0dab8a2017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-08134-3https://doaj.org/toc/2045-2322Abstract MicroRNAs (miRNAs) have emerged as promising biomarkers of disease. Their potential use in clinical practice requires standardized protocols with very low miRNA concentrations, particularly in plasma samples. Here we tested the most appropriate method for miRNA quantification and validated the performance of a hybridization platform using lower amounts of starting RNA. miRNAs isolated from human plasma and from a reference sample were quantified using four platforms and profiled with hybridization arrays and RNA sequencing (RNA-seq). Our results indicate that the Infinite® 200 PRO Nanoquant and Nanodrop 2000 spectrophotometers magnified the miRNA concentration by detecting contaminants, proteins, and other forms of RNA. The Agilent 2100 Bioanalyzer PicoChip and SmallChip gave valuable information on RNA profile but were not a reliable quantification method for plasma samples. The Qubit® 2.0 Fluorometer provided the most accurate quantification of miRNA content, although RNA-seq confirmed that only ~58% of small RNAs in plasma are true miRNAs. On the other hand, reducing the starting RNA to 70% of the recommended amount for miRNA profiling with arrays yielded results comparable to those obtained with the full amount, whereas a 50% reduction did not. These findings provide important clues for miRNA determination in human plasma samples.Anna Garcia-EliasLeonor AllozaEulàlia PuigdecanetLara NonellMarta TajesJoao CuradoCristina EnjuanesOscar DíazJordi BrugueraJulio Martí-AlmorJosep Comín-ColetBegoña BenitoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-14 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Anna Garcia-Elias
Leonor Alloza
Eulàlia Puigdecanet
Lara Nonell
Marta Tajes
Joao Curado
Cristina Enjuanes
Oscar Díaz
Jordi Bruguera
Julio Martí-Almor
Josep Comín-Colet
Begoña Benito
Defining quantification methods and optimizing protocols for microarray hybridization of circulating microRNAs
description Abstract MicroRNAs (miRNAs) have emerged as promising biomarkers of disease. Their potential use in clinical practice requires standardized protocols with very low miRNA concentrations, particularly in plasma samples. Here we tested the most appropriate method for miRNA quantification and validated the performance of a hybridization platform using lower amounts of starting RNA. miRNAs isolated from human plasma and from a reference sample were quantified using four platforms and profiled with hybridization arrays and RNA sequencing (RNA-seq). Our results indicate that the Infinite® 200 PRO Nanoquant and Nanodrop 2000 spectrophotometers magnified the miRNA concentration by detecting contaminants, proteins, and other forms of RNA. The Agilent 2100 Bioanalyzer PicoChip and SmallChip gave valuable information on RNA profile but were not a reliable quantification method for plasma samples. The Qubit® 2.0 Fluorometer provided the most accurate quantification of miRNA content, although RNA-seq confirmed that only ~58% of small RNAs in plasma are true miRNAs. On the other hand, reducing the starting RNA to 70% of the recommended amount for miRNA profiling with arrays yielded results comparable to those obtained with the full amount, whereas a 50% reduction did not. These findings provide important clues for miRNA determination in human plasma samples.
format article
author Anna Garcia-Elias
Leonor Alloza
Eulàlia Puigdecanet
Lara Nonell
Marta Tajes
Joao Curado
Cristina Enjuanes
Oscar Díaz
Jordi Bruguera
Julio Martí-Almor
Josep Comín-Colet
Begoña Benito
author_facet Anna Garcia-Elias
Leonor Alloza
Eulàlia Puigdecanet
Lara Nonell
Marta Tajes
Joao Curado
Cristina Enjuanes
Oscar Díaz
Jordi Bruguera
Julio Martí-Almor
Josep Comín-Colet
Begoña Benito
author_sort Anna Garcia-Elias
title Defining quantification methods and optimizing protocols for microarray hybridization of circulating microRNAs
title_short Defining quantification methods and optimizing protocols for microarray hybridization of circulating microRNAs
title_full Defining quantification methods and optimizing protocols for microarray hybridization of circulating microRNAs
title_fullStr Defining quantification methods and optimizing protocols for microarray hybridization of circulating microRNAs
title_full_unstemmed Defining quantification methods and optimizing protocols for microarray hybridization of circulating microRNAs
title_sort defining quantification methods and optimizing protocols for microarray hybridization of circulating micrornas
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/b4e3539c8ab74c0ca848f212ca0dab8a
work_keys_str_mv AT annagarciaelias definingquantificationmethodsandoptimizingprotocolsformicroarrayhybridizationofcirculatingmicrornas
AT leonoralloza definingquantificationmethodsandoptimizingprotocolsformicroarrayhybridizationofcirculatingmicrornas
AT eulaliapuigdecanet definingquantificationmethodsandoptimizingprotocolsformicroarrayhybridizationofcirculatingmicrornas
AT laranonell definingquantificationmethodsandoptimizingprotocolsformicroarrayhybridizationofcirculatingmicrornas
AT martatajes definingquantificationmethodsandoptimizingprotocolsformicroarrayhybridizationofcirculatingmicrornas
AT joaocurado definingquantificationmethodsandoptimizingprotocolsformicroarrayhybridizationofcirculatingmicrornas
AT cristinaenjuanes definingquantificationmethodsandoptimizingprotocolsformicroarrayhybridizationofcirculatingmicrornas
AT oscardiaz definingquantificationmethodsandoptimizingprotocolsformicroarrayhybridizationofcirculatingmicrornas
AT jordibruguera definingquantificationmethodsandoptimizingprotocolsformicroarrayhybridizationofcirculatingmicrornas
AT juliomartialmor definingquantificationmethodsandoptimizingprotocolsformicroarrayhybridizationofcirculatingmicrornas
AT josepcomincolet definingquantificationmethodsandoptimizingprotocolsformicroarrayhybridizationofcirculatingmicrornas
AT begonabenito definingquantificationmethodsandoptimizingprotocolsformicroarrayhybridizationofcirculatingmicrornas
_version_ 1718384984247500800