Efficient and self-adaptive in-situ learning in multilayer memristor neural networks

Memristor-based neural networks hold promise for neuromorphic computing, yet large-scale experimental execution remains difficult. Here, Xia et al. create a multi-layer memristor neural network with in-situ machine learning and achieve competitive image classification accuracy on a standard dataset.

Guardado en:
Detalles Bibliográficos
Autores principales: Can Li, Daniel Belkin, Yunning Li, Peng Yan, Miao Hu, Ning Ge, Hao Jiang, Eric Montgomery, Peng Lin, Zhongrui Wang, Wenhao Song, John Paul Strachan, Mark Barnell, Qing Wu, R. Stanley Williams, J. Joshua Yang, Qiangfei Xia
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/b4e8c66198ed41eea8aa429291ec599c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b4e8c66198ed41eea8aa429291ec599c
record_format dspace
spelling oai:doaj.org-article:b4e8c66198ed41eea8aa429291ec599c2021-12-02T13:23:48ZEfficient and self-adaptive in-situ learning in multilayer memristor neural networks10.1038/s41467-018-04484-22041-1723https://doaj.org/article/b4e8c66198ed41eea8aa429291ec599c2018-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-04484-2https://doaj.org/toc/2041-1723Memristor-based neural networks hold promise for neuromorphic computing, yet large-scale experimental execution remains difficult. Here, Xia et al. create a multi-layer memristor neural network with in-situ machine learning and achieve competitive image classification accuracy on a standard dataset.Can LiDaniel BelkinYunning LiPeng YanMiao HuNing GeHao JiangEric MontgomeryPeng LinZhongrui WangWenhao SongJohn Paul StrachanMark BarnellQing WuR. Stanley WilliamsJ. Joshua YangQiangfei XiaNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-8 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Can Li
Daniel Belkin
Yunning Li
Peng Yan
Miao Hu
Ning Ge
Hao Jiang
Eric Montgomery
Peng Lin
Zhongrui Wang
Wenhao Song
John Paul Strachan
Mark Barnell
Qing Wu
R. Stanley Williams
J. Joshua Yang
Qiangfei Xia
Efficient and self-adaptive in-situ learning in multilayer memristor neural networks
description Memristor-based neural networks hold promise for neuromorphic computing, yet large-scale experimental execution remains difficult. Here, Xia et al. create a multi-layer memristor neural network with in-situ machine learning and achieve competitive image classification accuracy on a standard dataset.
format article
author Can Li
Daniel Belkin
Yunning Li
Peng Yan
Miao Hu
Ning Ge
Hao Jiang
Eric Montgomery
Peng Lin
Zhongrui Wang
Wenhao Song
John Paul Strachan
Mark Barnell
Qing Wu
R. Stanley Williams
J. Joshua Yang
Qiangfei Xia
author_facet Can Li
Daniel Belkin
Yunning Li
Peng Yan
Miao Hu
Ning Ge
Hao Jiang
Eric Montgomery
Peng Lin
Zhongrui Wang
Wenhao Song
John Paul Strachan
Mark Barnell
Qing Wu
R. Stanley Williams
J. Joshua Yang
Qiangfei Xia
author_sort Can Li
title Efficient and self-adaptive in-situ learning in multilayer memristor neural networks
title_short Efficient and self-adaptive in-situ learning in multilayer memristor neural networks
title_full Efficient and self-adaptive in-situ learning in multilayer memristor neural networks
title_fullStr Efficient and self-adaptive in-situ learning in multilayer memristor neural networks
title_full_unstemmed Efficient and self-adaptive in-situ learning in multilayer memristor neural networks
title_sort efficient and self-adaptive in-situ learning in multilayer memristor neural networks
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/b4e8c66198ed41eea8aa429291ec599c
work_keys_str_mv AT canli efficientandselfadaptiveinsitulearninginmultilayermemristorneuralnetworks
AT danielbelkin efficientandselfadaptiveinsitulearninginmultilayermemristorneuralnetworks
AT yunningli efficientandselfadaptiveinsitulearninginmultilayermemristorneuralnetworks
AT pengyan efficientandselfadaptiveinsitulearninginmultilayermemristorneuralnetworks
AT miaohu efficientandselfadaptiveinsitulearninginmultilayermemristorneuralnetworks
AT ningge efficientandselfadaptiveinsitulearninginmultilayermemristorneuralnetworks
AT haojiang efficientandselfadaptiveinsitulearninginmultilayermemristorneuralnetworks
AT ericmontgomery efficientandselfadaptiveinsitulearninginmultilayermemristorneuralnetworks
AT penglin efficientandselfadaptiveinsitulearninginmultilayermemristorneuralnetworks
AT zhongruiwang efficientandselfadaptiveinsitulearninginmultilayermemristorneuralnetworks
AT wenhaosong efficientandselfadaptiveinsitulearninginmultilayermemristorneuralnetworks
AT johnpaulstrachan efficientandselfadaptiveinsitulearninginmultilayermemristorneuralnetworks
AT markbarnell efficientandselfadaptiveinsitulearninginmultilayermemristorneuralnetworks
AT qingwu efficientandselfadaptiveinsitulearninginmultilayermemristorneuralnetworks
AT rstanleywilliams efficientandselfadaptiveinsitulearninginmultilayermemristorneuralnetworks
AT jjoshuayang efficientandselfadaptiveinsitulearninginmultilayermemristorneuralnetworks
AT qiangfeixia efficientandselfadaptiveinsitulearninginmultilayermemristorneuralnetworks
_version_ 1718393175836459008