Efficient and self-adaptive in-situ learning in multilayer memristor neural networks
Memristor-based neural networks hold promise for neuromorphic computing, yet large-scale experimental execution remains difficult. Here, Xia et al. create a multi-layer memristor neural network with in-situ machine learning and achieve competitive image classification accuracy on a standard dataset.
Guardado en:
Autores principales: | Can Li, Daniel Belkin, Yunning Li, Peng Yan, Miao Hu, Ning Ge, Hao Jiang, Eric Montgomery, Peng Lin, Zhongrui Wang, Wenhao Song, John Paul Strachan, Mark Barnell, Qing Wu, R. Stanley Williams, J. Joshua Yang, Qiangfei Xia |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b4e8c66198ed41eea8aa429291ec599c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A novel true random number generator based on a stochastic diffusive memristor
por: Hao Jiang, et al.
Publicado: (2017) -
Three-dimensional crossbar arrays of self-rectifying Si/SiO2/Si memristors
por: Can Li, et al.
Publicado: (2017) -
An artificial nociceptor based on a diffusive memristor
por: Jung Ho Yoon, et al.
Publicado: (2018) -
Capacitive neural network with neuro-transistors
por: Zhongrui Wang, et al.
Publicado: (2018) -
An artificial spiking afferent nerve based on Mott memristors for neurorobotics
por: Xumeng Zhang, et al.
Publicado: (2020)