Genomics of experimental adaptation of Staphylococcus aureus to a natural combination of insect antimicrobial peptides

Abstract Antimicrobial peptides (AMP) are highly conserved immune effectors across the tree of life and are employed as combinations. In the beetle Tenebrio molitor, a defensin and a coleoptericin are highly expressed in vivo after inoculation with S. aureus. The defensin displays strong in vitro ac...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Olga Makarova, Paul Johnston, Alexandro Rodriguez-Rojas, Baydaa El Shazely, Javier Moreno Morales, Jens Rolff
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b4fad1d1790541478e27a0cb11e4bc7d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b4fad1d1790541478e27a0cb11e4bc7d
record_format dspace
spelling oai:doaj.org-article:b4fad1d1790541478e27a0cb11e4bc7d2021-12-02T15:07:52ZGenomics of experimental adaptation of Staphylococcus aureus to a natural combination of insect antimicrobial peptides10.1038/s41598-018-33593-72045-2322https://doaj.org/article/b4fad1d1790541478e27a0cb11e4bc7d2018-10-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-33593-7https://doaj.org/toc/2045-2322Abstract Antimicrobial peptides (AMP) are highly conserved immune effectors across the tree of life and are employed as combinations. In the beetle Tenebrio molitor, a defensin and a coleoptericin are highly expressed in vivo after inoculation with S. aureus. The defensin displays strong in vitro activity but no survival benefit in vivo. The coleoptericin provides a survival benefit in vivo, but no activity in vitro. This suggests a potentiating effect in vivo, and here we wanted to investigate the effects of this combination on resistance evolution using a bottom-approach in vitro starting with a combination of two abundant AMPs only. We experimentally evolved S. aureus in the presence of the defensin and a combination of the defensin and coleoptericin. Genome re-sequencing showed that resistance was associated with mutations in either the pmt or nsa operons. Strains with these mutations show longer lag phases, slower Vmax, and nsa mutants reach lower final population sizes. Mutations in the rpo operon showed a further increase in the lag phase in nsa mutants but not in pmt mutants. In contrast, final MICs (minimum inhibitory concentrations) do not differ according to mutation. All resistant lines display AMP but not antibiotic cross-resistance. Costly resistance against AMPs readily evolves for an individual AMP as well as a naturally occurring combination in vitro and provides broad protection against AMPs. Such non-specific resistance could result in strong selection on host immune systems that rely on cocktails of AMPs.Olga MakarovaPaul JohnstonAlexandro Rodriguez-RojasBaydaa El ShazelyJavier Moreno MoralesJens RolffNature PortfolioarticleAntimicrobial Peptides (AMPs)Abundant AMPsResistance DevelopmentResistance CostPexigananMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-8 (2018)
institution DOAJ
collection DOAJ
language EN
topic Antimicrobial Peptides (AMPs)
Abundant AMPs
Resistance Development
Resistance Cost
Pexiganan
Medicine
R
Science
Q
spellingShingle Antimicrobial Peptides (AMPs)
Abundant AMPs
Resistance Development
Resistance Cost
Pexiganan
Medicine
R
Science
Q
Olga Makarova
Paul Johnston
Alexandro Rodriguez-Rojas
Baydaa El Shazely
Javier Moreno Morales
Jens Rolff
Genomics of experimental adaptation of Staphylococcus aureus to a natural combination of insect antimicrobial peptides
description Abstract Antimicrobial peptides (AMP) are highly conserved immune effectors across the tree of life and are employed as combinations. In the beetle Tenebrio molitor, a defensin and a coleoptericin are highly expressed in vivo after inoculation with S. aureus. The defensin displays strong in vitro activity but no survival benefit in vivo. The coleoptericin provides a survival benefit in vivo, but no activity in vitro. This suggests a potentiating effect in vivo, and here we wanted to investigate the effects of this combination on resistance evolution using a bottom-approach in vitro starting with a combination of two abundant AMPs only. We experimentally evolved S. aureus in the presence of the defensin and a combination of the defensin and coleoptericin. Genome re-sequencing showed that resistance was associated with mutations in either the pmt or nsa operons. Strains with these mutations show longer lag phases, slower Vmax, and nsa mutants reach lower final population sizes. Mutations in the rpo operon showed a further increase in the lag phase in nsa mutants but not in pmt mutants. In contrast, final MICs (minimum inhibitory concentrations) do not differ according to mutation. All resistant lines display AMP but not antibiotic cross-resistance. Costly resistance against AMPs readily evolves for an individual AMP as well as a naturally occurring combination in vitro and provides broad protection against AMPs. Such non-specific resistance could result in strong selection on host immune systems that rely on cocktails of AMPs.
format article
author Olga Makarova
Paul Johnston
Alexandro Rodriguez-Rojas
Baydaa El Shazely
Javier Moreno Morales
Jens Rolff
author_facet Olga Makarova
Paul Johnston
Alexandro Rodriguez-Rojas
Baydaa El Shazely
Javier Moreno Morales
Jens Rolff
author_sort Olga Makarova
title Genomics of experimental adaptation of Staphylococcus aureus to a natural combination of insect antimicrobial peptides
title_short Genomics of experimental adaptation of Staphylococcus aureus to a natural combination of insect antimicrobial peptides
title_full Genomics of experimental adaptation of Staphylococcus aureus to a natural combination of insect antimicrobial peptides
title_fullStr Genomics of experimental adaptation of Staphylococcus aureus to a natural combination of insect antimicrobial peptides
title_full_unstemmed Genomics of experimental adaptation of Staphylococcus aureus to a natural combination of insect antimicrobial peptides
title_sort genomics of experimental adaptation of staphylococcus aureus to a natural combination of insect antimicrobial peptides
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/b4fad1d1790541478e27a0cb11e4bc7d
work_keys_str_mv AT olgamakarova genomicsofexperimentaladaptationofstaphylococcusaureustoanaturalcombinationofinsectantimicrobialpeptides
AT pauljohnston genomicsofexperimentaladaptationofstaphylococcusaureustoanaturalcombinationofinsectantimicrobialpeptides
AT alexandrorodriguezrojas genomicsofexperimentaladaptationofstaphylococcusaureustoanaturalcombinationofinsectantimicrobialpeptides
AT baydaaelshazely genomicsofexperimentaladaptationofstaphylococcusaureustoanaturalcombinationofinsectantimicrobialpeptides
AT javiermorenomorales genomicsofexperimentaladaptationofstaphylococcusaureustoanaturalcombinationofinsectantimicrobialpeptides
AT jensrolff genomicsofexperimentaladaptationofstaphylococcusaureustoanaturalcombinationofinsectantimicrobialpeptides
_version_ 1718388411779252224