Knowledge Distillation of Grassmann Manifold Network for Remote Sensing Scene Classification
Due to device limitations, small networks are necessary for some real-world scenarios, such as satellites and micro-robots. Therefore, the development of a network with both good performance and small size is an important area of research. Deep networks can learn well from large amounts of data, whi...
Guardado en:
Autores principales: | Ling Tian, Zhichao Wang, Bokun He, Chu He, Dingwen Wang, Deshi Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b502d9b230bd4486a4c0a2f5b86bebe2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Radon transforms and the rigidity of the Grassmannians
por: Gasqui, Jacques
Publicado: (2004) -
“Die Lineale Ausdehnungslehre” de H. G. Grassmann
por: Thiago Augusto Silva Dourado, et al.
Publicado: (2021) -
On Weak concircular Symmetries of Trans-Sasakian manifolds
por: Hui,Shyamal Kumar
Publicado: (2011) -
Remote Sensing Scene Image Classification Based on Dense Fusion of Multi-level Features
por: Cuiping Shi, et al.
Publicado: (2021) -
ON WEAK CONCIRCULAR SYMMETRIES OF LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS
por: Narain,Dhruwa, et al.
Publicado: (2013)