Predicting post-operative right ventricular failure using video-based deep learning
The echocardiogram allows for a comprehensive assessment of the cardiac musculature and valves, but its rich temporally resolved data remain underutilized. Here, the authors develop a video AI system trained to predict post-operative right ventricular failure.
Guardado en:
Autores principales: | Rohan Shad, Nicolas Quach, Robyn Fong, Patpilai Kasinpila, Cayley Bowles, Miguel Castro, Ashrith Guha, Erik E. Suarez, Stefan Jovinge, Sangjin Lee, Theodore Boeve, Myriam Amsallem, Xiu Tang, Francois Haddad, Yasuhiro Shudo, Y. Joseph Woo, Jeffrey Teuteberg, John P. Cunningham, Curtis P. Langlotz, William Hiesinger |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b505d01868f146ffbab6d3814a231757 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Digitization in maritime logistics—What is there and what is missing?
por: Markus Fruth, et al.
Publicado: (2017) -
Behavior and body size modulate the defense of toxin-containing sawfly larvae against ants
por: Jean-Luc Boevé
Publicado: (2021) -
Measurement error of network clustering coefficients under randomly missing nodes
por: Kazuki Nakajima, et al.
Publicado: (2021) -
Conceptualizing Corporate Sustainability Reporting and Risk Management Towards Green Growth in the Malaysian Oil and Gas Industry
por: Lai Fong-Woon, et al.
Publicado: (2021) -
Investors’ risk perception in the context of efficient market hypothesis: A conceptual framework for malaysian and indonesian stock exchange
por: Emad Azhar Ali Syed, et al.
Publicado: (2021)