Machine-Learning-Based Carbon Footprint Management in the Frozen Vegetable Processing Industry
In the paper, we present a method of automatic evaluation and optimization of production processes towards low-carbon-emissions products. The method supports the management of production lines and is based on unsupervised machine learning methods, i.e., canopy, k-means, and expectation-maximization...
Guardado en:
Autores principales: | Magdalena Scherer, Piotr Milczarski |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b5158055439a47b195741fc03868d8ab |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Carbon Footprint-Energy Detection for Desalination Small Plant Adaptation Response
por: Latifah Abdul Ghani, et al.
Publicado: (2021) -
Analysis of water–carbon–ecological footprints and resource–environment pressure in the Triangle of Central China
por: Yizhong Chen, et al.
Publicado: (2021) -
Investigation and Quantification of Carbon Footprint in Lagos Megacity
por: Abimbola Gbolahan Bola-Popoola, et al.
Publicado: (2019) -
Where has carbon footprint research gone?
por: Ru Chen, et al.
Publicado: (2021) -
Introduction and early measurement of carbon footprint concepts to respond the challenge of SDGs-Goal 13
por: S. Santhyami, et al.
Publicado: (2020)