Seamless integration of bioelectronic interface in an animal model via in vivo polymerization of conjugated oligomers
Leveraging the biocatalytic machinery of living organisms for fabricating functional bioelectronic interfaces, in vivo, defines a new class of micro-biohybrids enabling the seamless integration of technology with living biological systems. Previously, we have demonstrated the in vivo polymerization...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
KeAi Communications Co., Ltd.
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b51c286002fe42d2982363aff1ccbb20 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b51c286002fe42d2982363aff1ccbb20 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b51c286002fe42d2982363aff1ccbb202021-11-26T04:36:55ZSeamless integration of bioelectronic interface in an animal model via in vivo polymerization of conjugated oligomers2452-199X10.1016/j.bioactmat.2021.08.025https://doaj.org/article/b51c286002fe42d2982363aff1ccbb202022-04-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2452199X21004011https://doaj.org/toc/2452-199XLeveraging the biocatalytic machinery of living organisms for fabricating functional bioelectronic interfaces, in vivo, defines a new class of micro-biohybrids enabling the seamless integration of technology with living biological systems. Previously, we have demonstrated the in vivo polymerization of conjugated oligomers forming conductors within the structures of plants.Here, we expand this concept by reporting that Hydra, an invertebrate animal, polymerizes the conjugated oligomer ETE-S both within cells that expresses peroxidase activity and within the adhesive material that is secreted to promote underwater surface adhesion. The resulting conjugated polymer forms electronically conducting and electrochemically active μm-sized domains, which are inter-connected resulting in percolative conduction pathways extending beyond 100 μm, that are fully integrated within the Hydra tissue and the secreted mucus. Furthermore, the introduction and in vivo polymerization of ETE-S can be used as a biochemical marker to follow the dynamics of Hydra budding (reproduction) and regeneration. This work paves the way for well-defined self-organized electronics in animal tissue to modulate biological functions and in vivo biofabrication of hybrid functional materials and devices.Giuseppina TommasiniGwennaël DufilFederica FardellaXenofon StrakosasEugenio FergolaTobias AbrahamssonDavid BlimanRoger OlssonMagnus BerggrenAngela TinoEleni StavrinidouClaudia TortiglioneKeAi Communications Co., Ltd.articleIn vivo polymerizationBioelectronics interfacesConjugated oligomersModel organismMaterials of engineering and construction. Mechanics of materialsTA401-492Biology (General)QH301-705.5ENBioactive Materials, Vol 10, Iss , Pp 107-116 (2022) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
In vivo polymerization Bioelectronics interfaces Conjugated oligomers Model organism Materials of engineering and construction. Mechanics of materials TA401-492 Biology (General) QH301-705.5 |
spellingShingle |
In vivo polymerization Bioelectronics interfaces Conjugated oligomers Model organism Materials of engineering and construction. Mechanics of materials TA401-492 Biology (General) QH301-705.5 Giuseppina Tommasini Gwennaël Dufil Federica Fardella Xenofon Strakosas Eugenio Fergola Tobias Abrahamsson David Bliman Roger Olsson Magnus Berggren Angela Tino Eleni Stavrinidou Claudia Tortiglione Seamless integration of bioelectronic interface in an animal model via in vivo polymerization of conjugated oligomers |
description |
Leveraging the biocatalytic machinery of living organisms for fabricating functional bioelectronic interfaces, in vivo, defines a new class of micro-biohybrids enabling the seamless integration of technology with living biological systems. Previously, we have demonstrated the in vivo polymerization of conjugated oligomers forming conductors within the structures of plants.Here, we expand this concept by reporting that Hydra, an invertebrate animal, polymerizes the conjugated oligomer ETE-S both within cells that expresses peroxidase activity and within the adhesive material that is secreted to promote underwater surface adhesion. The resulting conjugated polymer forms electronically conducting and electrochemically active μm-sized domains, which are inter-connected resulting in percolative conduction pathways extending beyond 100 μm, that are fully integrated within the Hydra tissue and the secreted mucus. Furthermore, the introduction and in vivo polymerization of ETE-S can be used as a biochemical marker to follow the dynamics of Hydra budding (reproduction) and regeneration. This work paves the way for well-defined self-organized electronics in animal tissue to modulate biological functions and in vivo biofabrication of hybrid functional materials and devices. |
format |
article |
author |
Giuseppina Tommasini Gwennaël Dufil Federica Fardella Xenofon Strakosas Eugenio Fergola Tobias Abrahamsson David Bliman Roger Olsson Magnus Berggren Angela Tino Eleni Stavrinidou Claudia Tortiglione |
author_facet |
Giuseppina Tommasini Gwennaël Dufil Federica Fardella Xenofon Strakosas Eugenio Fergola Tobias Abrahamsson David Bliman Roger Olsson Magnus Berggren Angela Tino Eleni Stavrinidou Claudia Tortiglione |
author_sort |
Giuseppina Tommasini |
title |
Seamless integration of bioelectronic interface in an animal model via in vivo polymerization of conjugated oligomers |
title_short |
Seamless integration of bioelectronic interface in an animal model via in vivo polymerization of conjugated oligomers |
title_full |
Seamless integration of bioelectronic interface in an animal model via in vivo polymerization of conjugated oligomers |
title_fullStr |
Seamless integration of bioelectronic interface in an animal model via in vivo polymerization of conjugated oligomers |
title_full_unstemmed |
Seamless integration of bioelectronic interface in an animal model via in vivo polymerization of conjugated oligomers |
title_sort |
seamless integration of bioelectronic interface in an animal model via in vivo polymerization of conjugated oligomers |
publisher |
KeAi Communications Co., Ltd. |
publishDate |
2022 |
url |
https://doaj.org/article/b51c286002fe42d2982363aff1ccbb20 |
work_keys_str_mv |
AT giuseppinatommasini seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers AT gwennaeldufil seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers AT federicafardella seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers AT xenofonstrakosas seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers AT eugeniofergola seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers AT tobiasabrahamsson seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers AT davidbliman seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers AT rogerolsson seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers AT magnusberggren seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers AT angelatino seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers AT elenistavrinidou seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers AT claudiatortiglione seamlessintegrationofbioelectronicinterfaceinananimalmodelviainvivopolymerizationofconjugatedoligomers |
_version_ |
1718409862510018560 |