Performance Analysis of Long Short-Term Memory-Based Markovian Spectrum Prediction
Dynamic Spectrum Access (DSA) solutions equipped with spectrum prediction can enable proactive spectrum management and tackle the increasing demand for radio frequency (RF) bandwidth. Among various prediction techniques, Long Short-Term Memory (LSTM) is a deep learning model that has demonstrated hi...
Saved in:
Main Authors: | Niranjana Radhakrishnan, Sithamparanathan Kandeepan, Xinghuo Yu, Gianmarco Baldini |
---|---|
Format: | article |
Language: | EN |
Published: |
IEEE
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/b521fd391a034bc0be1802b8b0cfa1c3 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Water Flow Forecasting Based on River Tributaries Using Long Short-Term Memory Ensemble Model
by: Diogo F. Costa Silva, et al.
Published: (2021) -
Short-Term to Long-Term Plasticity Transition Behavior of Memristive Devices with Low Power Consumption via Facilitating Ionic Drift of Implanted Lithium
by: Young Pyo Jeon, et al.
Published: (2021) -
Multistage Real-Time Fire Detection Using Convolutional Neural Networks and Long Short-Term Memory Networks
by: Manh Dung Nguyen, et al.
Published: (2021) -
Performance Analysis of LSTMs for Daily Individual EV Charging Behavior Prediction
by: Ahmed S. Khwaja, et al.
Published: (2021) -
Milling Tool Wear Prediction Method Based on Deep Learning Under Variable Working Conditions
by: Mingwei Wang, et al.
Published: (2020)