Performance Analysis of Long Short-Term Memory-Based Markovian Spectrum Prediction
Dynamic Spectrum Access (DSA) solutions equipped with spectrum prediction can enable proactive spectrum management and tackle the increasing demand for radio frequency (RF) bandwidth. Among various prediction techniques, Long Short-Term Memory (LSTM) is a deep learning model that has demonstrated hi...
Enregistré dans:
Auteurs principaux: | Niranjana Radhakrishnan, Sithamparanathan Kandeepan, Xinghuo Yu, Gianmarco Baldini |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b521fd391a034bc0be1802b8b0cfa1c3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Water Flow Forecasting Based on River Tributaries Using Long Short-Term Memory Ensemble Model
par: Diogo F. Costa Silva, et autres
Publié: (2021) -
Short-Term to Long-Term Plasticity Transition Behavior of Memristive Devices with Low Power Consumption via Facilitating Ionic Drift of Implanted Lithium
par: Young Pyo Jeon, et autres
Publié: (2021) -
Multistage Real-Time Fire Detection Using Convolutional Neural Networks and Long Short-Term Memory Networks
par: Manh Dung Nguyen, et autres
Publié: (2021) -
Performance Analysis of LSTMs for Daily Individual EV Charging Behavior Prediction
par: Ahmed S. Khwaja, et autres
Publié: (2021) -
Milling Tool Wear Prediction Method Based on Deep Learning Under Variable Working Conditions
par: Mingwei Wang, et autres
Publié: (2020)